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ABSTRACT 

The process for determining the impact on direct labor maintenance man-hours by 

applying expert systems to diagnosis aircraft discrepancies is addressed. Based on field 

interviews with Navy enlisted maintenance technicians and technical representatives, 

average direct labor maintenance man-hour cost savings are projected by applying expert 

systems. 

The interviews contained quantitative and qualitative information to formulate the 

potential cost savings. To enhance future investigative efforts, an empirical model is 

developed by the authors. The model categorizes failed components based on then- 

average fault isolation times or beyond economical repair status of the organization. 

Based upon the categorization of components, the potential maintenance man-hours cost 

savings can be projected when applying expert systems to help resolve difficult and 

complex aircraft discrepancies. 

The F/A-18C, E-2C and S-3B aircraft top five component maintenance man-hour 

consumers at the organizational and intermediate maintenance levels are also reviewed in 

detail for Fiscal Year 1994. The thesis concludes with a discussion on the potential 

benefits of expert systems for aircraft maintenance diagnostics and recommendations for 

further study. 
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I.  INTRODUCTION 

Naval aviation maintenance managers in the post-cold war period are responsible 

for ensuring aircraft maintenance continues to be performed in a safe, efficient manner. 

This proves to be a continual challenge considering declining Department of Defense 

(DOD) resources, the decommissioning of aircraft squadrons and a general reduction in 

forces. 

Maintenance managers must continually seek new ways to optimize scarce 

resources and assist technicians in maintaining aircraft systems at the organizational, 

intermediate and depot maintenance levels. 

Research at the Naval Postgraduate School (NPS) demonstrated that using expert 

system software to troubleshoot the primary fire control system of guided missile frigates 

(FFGs) offered significant savings in support parts and marked improvement in 

operational readiness.1 

The commercial and defense aerospace field has also developed expert systems 

(Prerau, 1990). This thesis looks at one factor for evaluating the employment of expert 

systems for meeting future challenges in the field of Naval aviation maintenance. 

A.       OBJECTIVES 

The primary objective of this research is to determine a process for determining 

the impact on direct labor maintenance man-hours (MMHs) of applying expert systems 

to assist in diagnosis of aircraft discrepancies. 

The secondary objective of this research is to identify direct labor MMH costs 

associated with the Hornet, Hawkeye and Viking aircraft at the organizational and 

intermediate maintenance levels. 

'A developmental expert system, designated as the MK 92 Modification 2 (Mod 2) 
Fire Control System (FCS) Maintenance Advisor Expert System, is used to troubleshoot 
the fire control system of the U.S. Navy's Oliver Hazard Perry class of FFGs. (Powell, 
1993) 



The following primary research question is addressed: 

• Can a model be developed to derive the potential direct labor MMH cost 
savings by using expert systems to assist fault isolation of Hornet, Hawkeye and 
Viking systems/components? 

Secondary research questions include: 

• What are some of the potential benefits of using expert systems in the Naval 
aviation maintenance field? 

• What are the top five component MMH consumers at the organizational 
maintenance level for the Hornet, Hawkeye and Viking aircraft during Fiscal 
Year 1994? 

• What are the top five component MMH consumers at the intermediate 
maintenance level for the Hornet, Hawkeye and Viking aircraft during Fiscal 
Year 1994? 

• What are the direct labor MMH costs, using conventional fault isolation 
methods to identify failed components, for the three aircraft during Fiscal Year 
1994? 

B. SCOPE, LIMITATIONS AND ASSUMPTIONS 

This study is limited to potential economic consideration of the use of expert 

systems to reduce direct labor MMHs required to fault isolate Hornet, Hawkeye and 

Viking components. Because of the long lead time requirements to obtain usable data, the 

study does not address the economic feasibility of potentially using expert systems to 

resolve aircraft readiness degraders or A-799 (no defect, malfunction could not be 

duplicated, item checks good) issues. Study assumptions are stated within the context that 

they occur. 

C. RESEARCH METHODOLOGY 

Data collection for this thesis was conducted on-site and through telephone 

conversations.   Organizations and personnel that supported this research included: the 



Naval Aviation Maintenance Office (NAMO, Code 352-1); the Aircraft Intermediate 

Maintenance Department (AIMD), Naval Air Station (NAS) Lemoore, California; the 

Naval Aviation Engineering Service Unit (NAESU) Detachment Lemoore, NAS Lemoore, 

California; Antisubmarine Squadron 33 (VS-33); AIMD NAS North Island, California; 

AIMD NAS Miramar, California; McDonnell Douglas Corporation, Saint Louis, Missouri; 

and a group of Aerospace Maintenance Duty Officers assigned to the NPS, Monterey, 

California. 

Description of Naval aviation maintenance programs, procedures and terms are 

based on applicable aviation maintenance instructions and the authors' knowledge and 

experience gained while collectively serving at four separate Naval aircraft squadrons and 

two AIMDs. 

An in-depth review of commercial and military aviation maintenance literature was 

conducted. In addition an independent self study was performed by the authors to gain 

a working knowledge about expert systems. 

D.       THESIS ORGANIZATION 

The remaining chapters of this thesis are organized as follows: 

II. OVERVIEW OF NAVAL AVIATION MAINTENANCE. The Naval Aviation 

Maintenance Program and its controlling document, Office of the Chief of Naval 

Operations Instruction (OPNAVINST 4790.2E, Volumes I-VI), are briefly discussed. An 

overview of organizational, intermediate and depot maintenance levels is presented and 

their specific functions are outlined. Also, the Maintenance Data System (MDS) is 

reviewed, specific Naval aviation maintenance terms are explained and Navy/contractor 

engineering and technical services are discussed. 

III. F/A-l 8C. E-2C AND S-3B DIRECT LABOR MAINTENANCE MAN-HOUR 

COSTS. For each of the identified aircraft, the top five component MMH consumers at 

the organizational and intermediate maintenance levels are listed. The common causes 

of failure, MMHs expended using conventional fault isolation methods and a direct labor 



MMH cost associated with the failed components are identified.  The chapter data is for 

the time frame October 1993 to September 1994. 

IV. EXPERT SYSTEMS OVERVIEW. An overview of expert systems is given 

that includes how expert systems differ from conventional computer programs, the two 

main system components and their related functions, and the basic steps of how to 

develop such systems. Commercial and military applications of expert systems are 

discussed. Included are three specific aviation maintenance uses and the benefits realized 

from this advanced technology. 

V. MAINTENANCE MAN-HOUR COST SAVINGS USING EXPERT 

SYSTEMS. The concept of using expert systems to help fault isolate F/A-18C, E-2C and 

S-3B weapon systems is introduced. Based on interviews with Navy enlisted maintenance 

technicians and technical representatives, average direct labor MMH cost savings are 

projected from using expert systems. In order to better quantify potential direct labor 

MMH cost savings benefits from the application of expert systems, an empirical model 

is developed by the authors. 

VI. RESEARCH QUESTIONS AND ANSWERS/CONCLUSIONS/LESSONS 

LEARNED/RECOMMENDATIONS. A summary of research findings and recommenda- 

tions are provided. This includes lessons learned and other potential areas to investigate 

expert systems usage in the field of Naval aviation maintenance. 



II.  OVERVIEW OF NAVAL AVIATION MAINTENANCE 

The purpose of this section is to inform readers not aware of the Naval aviation 

maintenance process of applicable terms used throughout this study. The high tempo and 

operational demands of Naval aviation require scheduled and unscheduled aircraft 

maintenance critical to safe and successful operations. The training and expertise of the 

technicians and controllers charged with maintaining the aircraft systems is a significant 

factor in the success or failure of the organization. 

The guiding document for Naval Aviation Maintenance is the Office of the Chief 

of Naval Operations Instruction (OPNAVINST) 4790.2 Series, known as the Naval 

Aviation Maintenance Program (NAMP). The NAMP presents maintenance policies, 

procedures and responsibilities for all levels of maintenance throughout Naval aviation. 

It is the basic document and authority governing management of all Naval aviation 

maintenance. (OPNAVINST 4790.2E, Volume I) 

The NAMP consists of six interrelated volumes. Volume I is primarily 

introductory, providing concepts, organizational layout, guidance for using the NAMP, 

Marine Corps maintenance organization, contract maintenance, definitions and change 

submission procedures. Volume II deals with organizational level maintenance, Volume 

III with intermediate level maintenance and Volume IV with depot level maintenance. 

Volume V is concerned with the maintenance data systems, and Volume VI with 

maintenance data processing requirements. Each of these maintenance levels and 

categories is explained in the following sections. 

A.       ORGANIZATIONAL LEVEL (O-LEVEL) MAINTENANCE 

Organizational level maintenance is most commonly associated with squadron 

maintenance. These organizations are the custodians and users of the actual weapons 

system (i.e., aircraft). Functions and assignment of responsibilities are specifically 

delineated for all areas of the maintenance activity. Maintenance at the O-level consists 

primarily of rapid fault isolation and removal/replacement of weapons system components 



at the operational site. Routine scheduled maintenance and inspections (including 

painting, corrosion control/treatment and aircraft launch/recovery) are part of O-level 

maintenance.  The NAMP states: 

When removal and replacement of components from a weapons system is 
required, using only O-level test equipment and hand tools, the 
maintenance function is O-level.  (OPNAVINST 4790.2E, Volume II) 

Limited overlap between O-level and intermediate maintenance (I-level) functions 

are allowed only with justification. It warrants specific approval from the Naval Air 

Systems Command (NAVAIRSYSCOM). 

O-level is considered the most basic level of maintenance logistically, requiring 

the "least-skilled personnel" (Blanchard, 1992). In practice, squadron level maintenance 

involves rapid diagnosis and high tempo, dynamic responses to aircraft discrepancies. 

At the O-level, tools and test equipment are largely portable. They are designed 

for deployments and detachments, which are the normal course of operations for an 

organizational maintenance activity. Organizational maintenance requirements are 

designed to facilitate the dynamic requirements of fault isolation and repair of components 

to enhance readiness and mobility. 

B.       INTERMEDIATE LEVEL (I-LEVEL) MAINTENANCE 

Faulty components that have been removed from the aircraft by the O-level 

maintenance activity are normally beyond the repair capability of that activity. In such 

cases, a squadron receives a Ready For Issue (RFI) component for reinstallation from the 

supporting supply department. The faulty component is turned-in/forwarded to the AIMD 

for repair. 

AIMDs are the primary source for mamtaining the required level of organizational 

activity repairable spare parts inventory for the supply department. They are autonomous, 

independent repair facilities charged with the long-term sustainability of deployed forces. 

They may be either situated ashore (shore based) or afloat (seagoing). A typical AIMD 



provides repair facilities for several squadrons and a wide variety of aircraft (fixed wing, 

rotary wing, jets, propellers). 

Shore based AIMDs normally provide repair capability for all the types of aircraft 

where the AIMD is located. As with O-level repair, some overlap with O-level or depot 

level (D-level) maintenance is allowed as long as justification and specific approval is 

received from NAVAIRSYSCOM. 

The repair facilities at I-level are much more in-depth than those at the O-level. 

Specialized repair and test bench equipment are available for avionics, electrical, 

hydraulics, environmental/egress, power plants and support equipment systems. Test 

equipment calibration labs and Non-Destructive Inspection (NDI) equipment is also 

available. In addition airframe welding, composite and conventional airframe repair, 

plating, painting and corrosion control/treatment capabilities are available. 

Repairs are accomplished by technicians specifically trained in I-level repair 

techniques. As a result of the scope and depth of repairs undertaken, AIMDs are 

normally much larger organizations than their O-level squadron counterparts. Their role 

is continually expanding due to their necessary independence resulting from the 

geographic and technological scope of operations they support. 

C.       DEPOT LEVEL (D-LEVEL) MAINTENANCE 

The final level of aircraft maintenance is at the depot level. D-level maintenance 

functions include three general categories: rework, manufacture and support services. In 

addition, depots perform special structural inspections and in-service engineering 

functions. 

Rework is comprised of maintenance and modification. It includes restoration, 

rebuilding, reclamation, refurbishment, overhaul, repair, replacement, adjustment, 

servicing, inspection, calibration and testing. Changes and improvements to design 

through alterations, conversions, engineering changes and modernizations are also 

performed. (OPNAVINST 4790.2E, Volume IV) 



Manufacture involves the manufacture of items and component parts otherwise not 

available. Support service functions include professional engineering, technology and 

calibration services.  (OPNAVINST 4790.2E, Volume IV) 

The structure and composition of the depot level work force is dramatically 

different than either the organizational or intermediate level. The technicians are almost 

exclusively civilian, with very few military members involved. Military officers primarily 

serve in executive and administrative roles. The recent downsizing in defense has seen 

a reduction in the number of depots. 

Naval Aviation Depots are officially known as "NADEPs." NADEPs have the 

capability to perform rework or complete overhaul on aircraft to extend the aircraft's 

active service life. The maintenance tasks at NADEPs are much more in-depth and time 

consuming than either organizational or intermediate maintenance activities. Depot level 

maintenance often requires the actual transfer of aircraft custody, both physically and 

administratively, from an operational organization to a depot activity. 

D.       MAINTENANCE DATA SYSTEM 

The Maintenance Data System (MDS) is part of the Navy's Maintenance and 

Material Management (3M) System and provides the data input to the NAMP. MDS 

furnishes statistical data products which serve as management tools for efficient and 

economical maintenance management. MDS deals with equipment maintainability and 

reliability, equipment configuration (including alteration and technical directive (TD) 

status), equipment mission capability and utilization, material usage, material non- 

availability, maintenance/ material processing times and weapon systems/maintenance 

material costing. (OPNAVINST 4790.2E, Volume V) 

MDS requires command attention, support and use since MDS products are only 

as good as the input information. The system is designed so mat each worker, when 

performing a job, converts a narrative description of the job into codes. The information 

is entered on standard forms or source documents. (OPNAVINST 4790.2E, Volume V) 



Source documents are collected and transmitted to a data services facility (DSF) 

and converted to machine records which produce periodic reports. These reports provide 

assistance in planning and directing maintenance. The machine records are then 

forwarded to the Naval Aviation Maintenance Support Office (NAMSO). (OPNAVINST 

4790.2E, Volume V) 

A number of senior maintenance executives, the authors and many technicians feel 

the information available from MDS is not perfect and has inherent limitations. 

Demanding flight schedules and the paperwork burdens of MDS do not mix well with 

tired maintenance personnel and flight deck operations. The primary goals of 

maintenance personnel are related to aircraft readiness, sortie completion, and safety; not 

with detailed data collection. 

Data for this thesis was obtained from the Naval Logistics Data Analysis 

(NALDA) facility in Patuxent River, Maryland. NALDA is a management information 

system for aviation logistics management and technical decision support. Analysis 

capability is provided through interactive query and batch processing from remote 

terminals.  (OPNAVINST 4790.2E, Volume V) NPS is not a remote terminal site. 

E.        NAVAL AVIATION MAINTENANCE TERMS 

Since the following terms are used throughout this thesis, they are explained to 

acquaint readers with language used in the Naval aviation maintenance field and to 

facilitate the understanding of this study. 

1.        System 

A system includes related facilities, items, material, services and personnel such 

that it can be considered a self-sufficient item in its intended operation. (OPNAVINST 

4790.2E, Volume V) Examples of a complete system are an aircraft landing gear system, 

integrated flight control system or radar navigation system. 



2. Subsystem 

A combination of two or more pieces of equipment, generally separated in 

operation and such other parts necessary to perform an operational function or functions. 

(OPNAVINST 4790.2E, Volume V) Examples include a port main landing gear 

(subsystem) of an aircraft landing gear system or a rudder control system (subsystem) of 

an integrated flight control system. 

3. Component 

A number of parts joined together to perform a specific function. This applies to 

items that cannot be further disassembled for test or repair without requiring shop 

facilities. (OPNAVINST 4790.2E, Volume V) Examples include a mainmount or an 

actuator. 

4. Weapons Replaceable Assembly (WRA) 

A generic term which includes all replaceable packages of avionic equipment, pods 

or systems in an aircraft weapons system, with the exception of cables, mounts, fuse 

boxes, or circuit breakers. A WRA is composed of shop replaceable assemblies (SRAs). 

(OPNAVINST 4790.2E, Volume V) 

5. Shop Replaceable Assembly (SRA) 

A generic term which includes all the packages within a WRA, including the 

chassis and wiring for a unit. SRA is a term usually associated with intermediate level 

maintenance.  (OPNAVINST 4790.2E, Volume V) 

6. Work Unit Code (WUC) 

The WUC is a one, three, five, or seven character numeric or alpha/numeric code. 

It identifies a system, subsystem, or part of an end item. These codes are published in 

WUC manuals for end items in three major categories: (1) Type/Model/Series for aircraft, 

drones and missiles; (2) aircraft tactical trainers, and (3) aeronautical support equipment 

(SE). The WUC manuals are used to code maintenance actions on end items and 

components. The system code consists of the first two positions of the WUC and 

identifies the system within the aircraft/equipment. (OPNAVINST 4790.2E, Volume V) 
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7. Malfunction Description Code 

A three-character numeric or alphanumeric code used to describe the malfunction 

occurring on or in an item identified by a WUC.  (OPNAVINST 4790.2E, Volume V) 

8. Maintenance Man-Hours (MMHs) 

Maintenance man-hours are the total accumulated direct labor hours expended in 

performing a maintenance action. Direct maintenance man-hours are man-hours expended 

by assigned personnel to complete work. This includes the functions of preparation, 

inspection, disassembly, fault isolation, adjustment, replacement or reassembly of parts 

and calibration/tests required in restoring the item to a serviceable status. 

MMHs also include checking out and returning tools, looking up part numbers in 

illustrated parts breakdown manuals, transmitting required information to supply points 

and completing associated documentation. (OPNAVINST 4790.2E, Volume V) 

9. Elapsed Maintenance Time (EMT) 

EMT is defined as the actual clock time that maintenance was being performed on 

a job. EMT does not include cure time, charging time, or leak tests when conducted 

without maintenance personnel actually monitoring the work. Although EMT is directly 

related to job man-hours, it is not to be confused with total man-hours required to 

complete a job. For example, if five men complete a job in 2.0 hours of continuous 

work, the EMT = 2.0 hours and total man-hours = 10.0. (OPNAVINST 4790.2E, Volume 

V) 

10. Not Mission Capable (NMC) 

The material condition of an aircraft or training device, indicating that it is not 

capable of performing any of its missions. It is further subdivided as the sum of Not 

Mission Capable Maintenance (NMCM) and Not Mission Capable Supply (NMCS). 

(OPNAVINST 4790.2E, Volume V) 

11. Not Mission Capable Maintenance (NMCM) 

The material condition of an aircraft or training device, indicating that it is not 

capable of performing any of its missions because of O-level or I-level maintenance 

requirements.  (OPNAVINST 4790.2E, Volume V) 
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12. Not Mission Capable Supply (NMCS) 

The material condition of an aircraft or training device, indicating that it is not 

capable of performing any of its missions because the maintenance required to fix or clear 

the discrepancy cannot continue due to a supply shortage. (OPNAVINST 4790.2E, 

Volume V) 

13. A-799 

In order to determine the causes of aircraft discrepancies, rapid diagnostics must 

be performed at the organizational level, often in the hectic environment of aircraft carrier 

flight deck operations. This frequently requires the removal of an aircraft component 

which is sent to the afloat AIMD for repair. 

In the event that AIMD is unable to find fault with the component, it is returned 

to Ready for Issue (RFI) status after a thorough test and check. When such a component 

is returned with no defect found, the item is considered A-799. 

14. Maintenance Instruction Manual (MIM) 

A manual containing instructions for organizational and intermediate maintenance 

and servicing of a specific model aircraft. It identifies each maintenance task to the 

responsible maintenance level. 

F.        ENGINEERING AND TECHNICAL SERVICES, NAVY (NETS) AND 
CONTRACTOR (CETS) 

NETS and CETS support services are composed of technical experts specializing 

in various aircraft weapons systems and test/repair facilities. Contractors supply employee 

CETS personnel (McDonnell Douglas, Grumman, Lockheed). NETS personnel are 

controlled by the Naval Aviation Engineering Service Unit (NAESU). 

NAESU is a field activity of NAVAIRSYSCOM and reports directly to the 

Assistant Commander for Logistics and Fleet Support. NAESU head-quarters is located 

at the Naval Base in Philadelphia, Pennsylvania. 
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NAESU's mission is to provide field engineering technical assistance and 

instruction to Naval aviation activities in the installation, maintenance repair and operation 

of aviation systems and equipment.  (NAESU 50th Anniversary Brochure) 

G.       SUMMARY 

This chapter provided an overview of the Naval aviation maintenance program. 

The topics covered were a breakdown of the Naval aviation maintenance organization, 

general/specific responsibilities, and the inter-relationships between respective 

organizational areas. Selected terms were defined that are used throughout the body of 

this research. Chapter III provides a snapshot view of the direct labor MMH costs, 

without using expert systems, to fault isolate aircraft systems or components. 
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III.     F/A-18C, E-2C AND S-3B DIRECT LABOR MAINTENANCE 
MAN-HOUR COSTS 

Maintenance managers have gauges to measure the efficiency, effectiveness and 

economic performance levels of an organization. Direct labor maintenance man-hours 

(MMHs) is one gauge used in the aviation maintenance field to measure performance 

levels. When managers know the number of MMHs consumed, plus the rates of labor to 

perform specific maintenance actions, the organization's direct labor cost can be 

determined. 

This chapter briefly describes the F/A-18C Hornet, E-2C Hawkeye and S-3B 

Viking aircraft and their roles. For each of the aircraft, the top five component 

maintenance man-hour (MMH) consumers at the organizational and intermediate 

maintenance levels are presented and evaluated. A direct labor MMH cost per hour is 

calculated and combined with the selected weapon system's MMHs. This information 

gives a snapshot view of how much it directly costs to support the aircraft maintenance 

effort. 

The direct labor MMH costs are based solely on using conventional fault isolation 

methods.2 No use of an expert system is considered. All direct labor MMH costs will 

be referred to as MMH costs throughout the remainder of this study. Also, all MMH 

costs were incurred from October 1993 to September 1994. Therefore, the costs are 

presented in Fiscal Year (FY) 1994 dollars. 

A.       MMH COST PER HOUR 

On the basis of the authors' 32 years of accumulated experience in aviation 

maintenance, a decision was made to use the E-5 paygrade to calculate an hourly labor 

cost to perform aircraft maintenance. This decision was based on the following: 

Conventional fault isolation methods consist of technicians using maintenance 
instruction manuals (MIMs), experience, suggestions of counterparts, and any available 
resource materials and/or assistance from technical representatives to solve aircraft 
maintenance problems. 
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• E-7 and above personnel perform aviation maintenance manager related 
functions and do not perform "hands-on" maintenance tasks unless absolutely 
necessary. 

• E-6 personnel supervise the vital functions of their work centers and maintain 
constant communications with maintenance control at the organizational 
maintenance level and production control at the intermediate maintenance level. 

• E-5 personnel perform the vast majority of fault isolation and repair/replace 
maintenance actions. They are technically competent, have completed their 
training tracks and are not required to perform temporary additional duty 
(TAD) functions. 

• E-4 and below personnel do not perform the majority of fault isolation and 
repair/replace maintenance actions. Their weapon system's learning curve rate 
is high as compared to other technicians. Also, they have not completed their 
training tracks and are eligible to perform TAD functions. 

• Maintenance requirement cards (MRCs) delineate specific maintenance tasks for 
each rating/paygrade.  E-5 is an acceptable average. 

The composite hourly labor rate for an E-5 maintenance technician is $16.28, in 

FY 1992 dollars, as provided in Naval Comptroller (NAVCOMPT) Notice 7041 dated 

1992. The composite rate does not factor in compensation for leave and holiday accrual, 

medical benefits and accrual of other personnel support costs. 

An hourly labor rate of $16.28 must be accelerated by: (1) a factor of 114 percent 

to compensate for leave and holiday accrual, and (2) a factor of 118 percent to 

compensate for accrual of other personnel support costs (NAVCOMPT Notice 7041, p. 

5-95). The composite hourly labor rate is therefore $21.90 for an E-5 maintenance 

technician in FY 1992 dollars. 

Since this study uses FY 1994 weapons system's data, the FY 1992 $21.90 rate 

is inflated by a factor of 105.89 percent. This establishes an E-5 composite hourly labor 

rate of $23.19 in FY 1994 dollars (Office of Management and Budget, 1994). The E-5 

composite hourly rate of $23.19 is used to in calculate MMH costs and average MMH 

cost savings. Table I summarizes this process. Following the table, a discussion of each 

aircraft and breakout of the top component MMH consumers is made. 
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$16.28 Composite hourly labor rate for an E-5 in FY 1992 dollars 

x     114% Accelerated compensation factor for leave and holiday accrual 

$18.56 Composite hourly labor rate for an E-5, in 
FY 1992 dollars, after applying the leave and holiday acceleration 
factor 

x     118% Accelerated composition factor for accrual of other personnel 
support costs 

$21.90 Composite hourly labor rate for an E-5, in 
FY 1992 dollars, after applying the accrual of other personnel 
support costs acceleration factor 

x 105.89% Inflation factor to convert FY 1992 dollars to FY 1994 dollars 

$23.19 E-5 composite hourly labor rate in FY 1994 dollars 

Table I. Acceleration   Schedule  for  Converting  an   E-5   Composite 
Hourly Labor Rate from FY 1992 to FY 1994 Dollars 

B. F/A-18C HORNET 

The F/A-18C Hornet is a dual engine, single-seat aircraft that performs the strike- 

fighter role in the Navy and Marine Corps. The Hornet is highly maneuverable, is 

capable of Mach plus speed and armed with a 20-millimeter cannon. Wingtip positions, 

three fuselage stations and four wing stations for weapons and sensor/guidance pods, 

enable the aircraft to perform its role merely by changing weapon racks. (Polmar, 1987) 

As of September 30, 1994, there were 333 F/A-18C aircraft in the Navy/Marine Corps 

inventory. 

Three questions are often asked by aviation maintenance managers: (1) which 

components fail, (2) what causes the components to fail, and (3) what are the number of 

MMHs consumed in fault isolation and repair/ replacement of failed components. 

Once these questions are asked, aviation maintenance managers are better able to 

analyze aircraft maintenance problems and provide viable solutions to problems. 
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Based on the previous three questions, a short discussion on the top five O- and 

I-level component MMH consumers, the causes of failure, and the associated costs for the 

three aircraft follows. 

1. Top Five F/A-18C Component MMH Consumers at the O-Level 

Table II lists the top five component MMH consumers for the period October 1993 

to September 1994. The number one Hornet MMH consumer was the SUU63/A aircraft 

pylon. Corrosion was the leading cause of failure; 3,082.6 MMHs were consumed fixing 

pylon failures. The second largest MMH consumer was the LAU7/A guided missile 

launcher. The leading cause of failure, once again, was corrosion; 2,445.9 MMHs were 

consumed by launcher failures. 

The BRU32/A aircraft ejector rack was the third leading consumer of MMHs. 

Corrosion was again the leading cause of failure; 1,761.6 MMHs were consumed by 

ejector rack failures. Aileron installation was the fourth leading MMH consumer at the 

O-level. The number one cause of failure was corrosion. Aileron failures accounted for 

587.0 MMHs. 

The main landing gear mechanical installation completed the list of top five 

component MMH consumers. Corrosion was the main cause of failure; 251.5 MMHs were 

consumed.  Additional weapon systems data can be found in Appendix A. 

2. Top Five F/A-18C Component MMH Consumers at the I-Level 

As listed in Table III, the APG652 radar transmitter, APG65 radar receiver exciter 

and APG65 antenna consumed the majority of MMHs. These three components are 

subsystem components of the weapons control system. They are identified by a WUC 74 

two-digit system code. 

2Weapon systems are categorized by equipment indicator letters. These letters indicate 
where the equipment is installed, what type of equipment it is and what function(s) the 
equipment performs. For example, the APG code is broken down as follows: A indicates 
equipment installed and operated in aircraft, P indicates radar equipment and G indicates 
fire control or search directing equipment. 
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Component Cause of Malfunction Number of MMH 
Malfunction Description 

Code 
Failures 

SUU63/A Aircraft Corroded 170 1,008 3,082.6 
Pylon Punctured 070 116 

Nicked/Chipped 425 84 
Cracked/Crazed 190 47 
Stripped/Worn 020 36 

LAU7/A Guided Corroded 170 818 2,445.9 
Missile Launcher Punctured 070 215 

Nicked/Chipped 425 130 
Stripped/Worn 020 67 
Broken Wire 160 50 

BRU32/A Aircraft Corroded 170 899 1,761.6 
Ejector Bomb Does Not Lock 932 38 
Rack Broken Wire 160 34 

Stripped/Worn 020 31 
Adjustment 127 30 

Aileron Corroded 170 54 587.0 
Installation Punctured 070 15 

Cracked/Crazed 190 9 
Nicked/Chipped 425 9 
Stripped/Worn 020 7 

Main Landing Corroded 170 63 251.4 
Gear Nicked/Chipped 425 9 
Mechanical Stripped/Worn 020 6 
Installation Punctured 070 6 

Rigging 128 2 

Table II.        Top Five F/A-18C Component MMH Consumers 
at the O-Level (FY 1994) 
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Component Cause of Malfunction Number of MMH 
Malfunction Description 

Code 
Failures 

APG65 Radar Fails Tests 290 242 11,493.5 
Transmitter Broken Wire 160 229 

Punctured 070 18 
Voltage 169 15 
Failure 374 10 

APG65 Radar Broken Wire 160 163 10,579.8 
Receiver Exciter Adjustment 127 158 

Fails Tests 290 150 
Punctured 070 9 
Voltage 169 5 

APG65 Antenna Fails Tests 290 258 7,898.7 
Adjustment 127 229 
Broken Wire 160 58 
Punctured 070 17 
Scheduled 804 8 
Maintenance 

ASW44 Pitch- Broken Wire 160 275 5,570.3 
Roll-Yaw Fails Tests 290 136 
Computer Adjustment 127 10 

Voltage 169 7 
Wrong Logic 447 6 

Radio Receiver/ Adjustment 127 309 4,819.9 
Transmitter No Output 255 175 

Punctured 070 8 
Broken Wire 160 3 
Voltage 169 3 

Table III.      Top Five F/A-18C Component MMH Consumers 
at the I-Level (FY 1994) 
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Since the components are part of a common system, their data was aggregated 

together. Fails diagnostic/automatic tests and broken wire/defective contact/connection 

were the leading causes of failure. The APG65 components accounted for 29,972.0 

MMHs. 

The ASW44 pitch-roll-yaw computer was the fourth leading consumer of MMHs. 

The leading cause of failure was broken wire/defective contact/connection. This type of 

failure occurred 275 times. The second leading cause of failure was fails 

diagnostic/automatic tests. It occurred 136 times and MMHs consumed by the ASW44 

came to 5,570.3. 

The radio receiver/transmitter (WUC 62X21) concluded the list of top five 

component MMH consumers. The leading cause of failure was adjustment/alignment 

improper; 4,819.9 MMHs were consumed during FY 1994. 

3.        F/A-18C MMH Costs 

Table IV lists the costs for the O-level and I-Ievel top five component MMH 

consumers. The total cost for the top five MMH consumers was $1,124,499.33 for 

Hornet maintenance at both levels. 

The Hornet MMH cost drivers occurred at the intermediate maintenance level. The 

weapons control system components (WUCs 742G1, 742G2, 742G6) accounted for 

approximately 62 percent of the total MMH cost When one factors in the ASW44 pitch- 

roll-yaw computer and radio receiver/ transmitter failures, the I-level accounted for 83 

percent total MMH costs in the F/A-18C. 

C.       E-2C HAWKEYE 

The E-2C Hawkeye is a carrier-based Airborne Early Warning (AEW) aircraft 

developed specifically for aircraft carrier operations. The Hawkeye's most distinctive 

feature is a 24-foot diameter, saucer-like radome that houses the ultra high frequency 

(UHF) radar. The radar gives the aircraft an effective detection range of approximately 

240 nautical miles. It has both over land and water capability. More than 250 air targets 
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Component WUC MMH MMH Cost Per 
Hour 

MMH Costs 

O-Level 

SUU63/A 
Aircraft Pylon 

75E51 3,082.6 $23.19 $71,485.49 

LAU7/A Guided 
Missile Launcher 

751B6 2,445.9 $23.19 $56,720.42 

BRU32/A 
Aircraft Ejector 
Bomb Rack 

754CD 1,761.6 $23.19 $40,851.50 

Aileron 
Installation 

14211 587.0 $23.19 $13,612.53 

Main Landing 
Gear Mechanical 
Installation 

13C11 251.4 $23.19 $5,829.97 

I-Level 

APG65 Radar 
Transmitter 

742G1 11,493.5 $23.19 $266,534.27 

APG65 Radar 
Receiver Exciter 

742G2 10,579.8 $23.19 $245,345.56 

APG65 Antenna 742G6 7,898.7 $23.19 $183,170.85 

ASW44 Pitch- 
Roll-Yaw 
Computer 

57D91 5,570.3 $23.19 $129,175.26 

Radio   Receiver/ 
Transmitter 

62X21 4,819.9 $23.19 $111,773.48 

Total MMH Cost $1,124,499.33 

Table IV.  F/A-18C Hornet MMH Costs (FY 1994) 

can be simultaneously tracked and up to 30 interceptors can be controlled.   (Polmar, 

1987)  As of September 30, 1994, there were 123 E-2C aircraft in the Navy inventory. 
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1. Top Five E-2C Component MMH Consumers at the O-Level 

Table V lists the top five component MMH consumers for the period October 1993 

to September 1994. The number one Hawkeye component MMH consumer was the 

variable pitch propeller. Corrosion was the primary cause of failure; this was followed 

closely by internal/external leaking.  Propeller failures accounted for 4,808.3 MMHs. 

The second leading MMH consumer was the power plant system installation/engine 

assembly. Corrosion was once again the leading cause of failure. Related failures 

accounted for 2,716.0 MMHs. 

Utility lights consumed the third largest amount of MMHs. Burned out light 

bulbs/fuses was the leading cause of failure. Utility light failures accounted for 1,639.1 

MMHs. The rudder was the fourth leading consumer of MMHs at the O-level. Corrosion 

was the primary cause of failure. Rudder failures consumed 1,298.7 MMHs. 

The O-level's fifth largest MMH consumer was the propeller control assembly. 

Corrosion, again, was the leading cause of failure. The propeller control assembly 

consumed 510.7 MMHs. 

2. Top Five E-2C Component MMH Consumers at the I-Level 

The radar navigation (RNAV) system (WUC 72) had four of the top five 

component MMH consumers. The components (WUCs 726J2, 726J4, 728E2, 728E1) are 

part of a common system and the data is therefore aggregated. Table VI and Appendix 

A have more detailed data. Broken wire/defective contact/connector, adjustment/ 

alignment improper and "no output" were the leading causes of failure. The RNAV 

system accounted for 7,383.3 MMHs. The AIC14 intercommunication system (ICS) 

control was the remaining top five MMH consumer. All five leading causes of failure 

were closely distributed.  The AIC14 accounted for 2,491.9 MMHs. 

3. E-2C MMH Costs 

The Hawkeye's total MMH cost was $483,465.12 for the top five selected weapon 

systems data. Organizational level MMH cost accounted for approximately 53 percent of 

the total cost. As documented in Table VII, the variable pitch propeller (WUC 32512) 

was the major O-level cost driver.  It accounted for 23 percent of the total MMH cost 
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Component Cause of Malfunction Number of MMH 
Malfunction Description 

Code 
Failures 

Variable Pitch Corroded 170 67 4,808.3 
Propeller Stripped/Worn 020 62 

Deteriorated 117 44 
Adjustment 127 44 
Out of Balance 458 40 

Power Plant Corroded 170 241 2,716.0 
System Install/ Adjustment 127 70 
Engine Contamination 306 70 
Assembly Stripped/Worn 020 68 

Leaking 381 36 

Utility Light Burned Out 
Bulbs/Fuses 

080 1,060 1,639.1 

Broken Wire 160 100 
Punctured 070 76 
Corroded 170 31 
Internal Failure 374 13 

Rudder Corroded 170 95 1,298.7 
Stripped/Worn 020 40 
Cracked 190 32 
Nicked 425 32 
Punctured 070 19 

Propeller Corroded 170 14 510.7 
Control Leaking 381 8 
Assembly Punctured 070 5 

Fluctuates 037 4 
Adjustment 127 3 

Table V.        Top Five E-2C Component MMH Consumers 
at the O-Level (FY 1994) 
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Component Cause of Malfunction Malfunction 
Description 
Code 

Number of 
Failures 

MMH 

Azimuth Range Adjustment 127 102 7,160.5 
Indicator Broken Wire 

Fails Tests 
Punctured 
Internal Failure 

160 
290 
070 
374 

85 
75 
15 
4 

AIC14 ICS No Output 255 77 2,491.9 
Control Punctured 

Broken Wire 
Adjustment 
Internal Failure 

070 
160 
127 
374 

63 
57 
31 
10 

Azimuth Range Punctured 070 15 202.2 
Indicator Broken Wire 

Adjustment 
Stuck/Binding 
Fails Tests 

160 
127 
135 
290 

12 
7 
2 
2 

Digital Data Punctured 070 7 17.0 
Converter Broken Wire 

Internal Failure 
160 
374 

1 
1 

Digital Data Adjustment 127 1 3.6 
Computer 

Table VI. Top Five E-2C Component MMH Con! miners 
at the I-Level (FY 1994) 
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Component WUC MMH MMH Cost Per 
Hour 

MMH Costs 

O-Level 

Variable Pitch 
Propeller 

32512 4,808.3 $23.19 $111,504.48 

Power Plant System 
Installation/ 
Engine Assembly 

29E10 2,716.0 $23.19 $62,984.04 

Utility Light 4422K 1,639.1 $23.19 $38,010.73 

Rudder 14121 1,298.7 $23.19 $30,116.85 

Propeller Control 
Assembly 

32513 510.7 $23.19 $11,843.13 

I-Level - 

Azimuth Range 
Indicator 

726J2 7,160.5 $23.19 $166,052.00 

AIC14 ICS Control 64184 2,491.9 $23.19 $57,787.16 

Azimuth Range 
Indicator 

726J4 202.2 $23.19 $4,689.02 

Digital Data 
Converter 

728E2 17.0 $23.19 $394.23 

Digital Data 
Computer 

728E1 3.6 $23.19 $83.48 

Total MMH Cost $483,465.12 

Table VII.  E-2C Hawkeye MMH Costs (FY 1994) 
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Forty-seven percent of the total MMH cost was accumulated at the intermediate 

maintenance level. The azimuth range indicator (WUC 726J2) was the number one cost 

driver, accounting for 34 percent of the total cost. The combined I-level cost driver data 

for WUCs 726J2, 726J4, 728E2 and 728E1 accounted for only 35 percent of the total 

MMH cost. 

D.       S-3B VIKING 

The S-3B Viking is a Navy, aircraft carrier deployable, anti-submarine warfare 

(ASW) aircraft. It has an internal weapons bay and carries an assortment of weapons, 

including torpedoes. It has two wing pylons capable of carrying Harpoon anti-ship 

missiles, a variety of bombs, aerial refueling stores that provide an in-flight refueling 

capability, and general material transport via a blivet. The aircraft's ASW systems 

include magnetic anomaly detection (MAD), forward-looking infrared radar (FLIR), and 

sonobuoys in fuselage chutes. (Polmar, 1987) As of September 30, 1994, there were 103 

S-3B aircraft in the Navy inventory. 

1.        Top Five S-3B Component MMH Consumers at the O-Level 

Table VIII lists the top five component MMH consumers for the period of October 

1993 to September 1994. The ASW33 flight data computer was the number one O-level 

MMH consumer. Broken wire/defective contact/ connector was the leading cause of 

failure. This was followed by internal failure of the component. The ASW33 accounted 

for 2,697.0 MMHs. 

The number two item on the MMH consumer list was the switch logic unit. 

Broken wire/defective contact/connector once again was the leading cause of failure. The 

switch logic unit accounted for 2,489.4 MMHs. The integrated radio controller consumed 

the third largest amount of MMHs at the O-Level. Again, broken wire/defective 

contact/connector was the number one cause of failure. It occurred 310 times and 1,879.4 

MMHs were consumed by integrated radio controller failures. 

The BRU14 bomb rack assembly placed fourth among MMH consumers. 

Corrosion was the prime reason for failure. The BRU14 accounted for 877.2 MMHs. 
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Component Cause of Malfunction Malfunction 
Description 
Code 

Number of 
Failures 

MMH 

ASW33 Flight Broken Wire 160 559 2,697.0 
Data Computer Internal Failure 374 297 

Adjustment 127 128 
Punctured 070 55 
No Output 255 29 

Switch Logic Broken Wire 160 470 2,489.4 

Unit No Output 255 138 
Fails Tests 290 82 
Internal Failure 374 79 
Corroded 170 44 

Integrated Radio Broken Wire 160 310 1,879.4 
Controller Burned Out 

Bulbs/Fuses 
080 242 

No Output 255 80 
Internal Failure 374 77 
Punctured 070 44 

BRU14 Bomb Corroded 170 620 877.2 
Rack Assembly Broken Wire 160 68 

Punctured 070 26 
Adjustment 127 22 
Stripped/Worn 020 9 

Engine Wing Corroded 170 113 425.8 
Pylon Install/ Punctured 070 18 
Assembly Peeled/Ruptured 429 17 

Stripped/Worn 020 8 
Cracked/Crazed 190 8 

Table VIII.    Top Five S-3B Component MMH Consumers 
at the O-Level (FY 1994) 
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Fifth on the list of failures was the engine wing pylon installation/assembly. Again, 

corrosion was the primary cause of failure; 425.8 MMHs were consumed by these 

failures. 

2. Top Five S-3B Component MMH Consumers at the I-Level 

The ASW33 flight data computer was the number one consumer of MMHs at the 

I-level. As listed in Table IX, broken wire/defective contact/connector was the main 

cause of failure.  ASW33 failures accounted for 8,498.2 MMHs. 

The switch logic unit was the second leading consumer of MMHs. The main 

cause of failure was broken wire/defective contact/connector. This type of malfunction 

occurred 240 times; 6,565.6 MMHs were consumed by switch logic unit failures. 

Placing third among MMH consumers was the navigation data converter. Again, 

the leading cause of failure was broken wire/defective contact/connector. The navigation 

data converter accounted for 6,292.7 MMHs. The ARC 156 radio receiver/transmitter was 

the fourth leading MMH consumer. Adjustment/alignment was the leading cause of 

failure. This was followed closely by fails diagnostic/automatic tests. ARC156 failures 

consumed 5,487.8 MMHs. 

Fifth on the I-level's MMH consumer list was wheel/tire assemblies. The leading 

cause of failure was eddy-current inspection, followed closely by stripped/worn 

discrepancies.  The wheel/tire assemblies accounted for 191.2 MMHs. 

3. S-3B MMH Costs 

The total MMH cost was $821,025.72 for Viking top five MMH consumers for O- 

level and I-level as listed in Table X. The organizational maintenance level accounted 

for 24 percent of the total cost. The ASW33 flight data computer was the number one 

O-level cost driver at $62,543.43. 

Intermediate maintenance level repair accounted for 74 percent of the total cost. 

The ASW33 flight data computer again accounted for $197,073.26 or 24 percent of the 

total cost. The ASW33 switch logic unit was the second leading cost driver at a cost of 

$152,256.26. This was followed by the ASW33 navigation data converter at a cost of 

$145,927.71. 
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Component Cause of Malfunction Malfunction 
Description 
Code 

Number of 
Failures 

MMH 

ASW33 Flight Broken Wire 160 283 8,498.2 
Data Computer Fails Tests 290 151 

Punctured 070 35 
Internal Failure 374 4 
Adjustment 127 3 

Switch Logic Broken Wire 160 240 6,565.6 

Unit Fails Tests 290 102 
Adjustment 127 43 
Punctured 070 27 
Internal Failure 374 10 

Navigation Data Broken Wire 160 272 6,292.7 
Converter Fails Tests 290 141 

Punctured 070 15 
Adjustment 127 14 
Internal Failure 374 2 

ARC156 Radio Adjustment 127 149 5,487.8 
Receiver/ Fails Tests 290 119 
Transmitter Broken Wire 160 116 

Punctured 070 33 
Corroded 170 12 

Wheel/Tire Eddy-Current 572 6 191.2 
Assembly Inspection 

Stripped/Worn 020 4 
Tire Leakage 781 4 
Punctured 070 3 
Magnetic Particle 571 3 
Inspection 

Table IX.       Top Five S-3B Component MMH Consumers 
at the I-Level (FY 1994) 
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Component WUC MMH MMH Cost 
Per Hour 

MMH Costs 

O-Level 

ASW33 Flight Data 
Computer 

57367 2,697.0 $23.19 $62,543.43 

Switch Logic Unit 64354 2,489.4 $23.19 $57,729.19 

Integrated Radio 
Controller 

64351 1,879.4 $23.19 $43,583.29 

BRU14 Bomb Rack 
Assembly 

754BQ 877.2 $23.19 $20,342.27 

Engine Wing Pylon 
Installation/ 
Assembly 

29Q4H 425.8 $23.19 $9,874.30 

I-Level 

ASW33 Flight Data 
Computer 

57367 8,498.2 $23.19 $197,073.26 

Switch Logic Unit 64354 6,565.6 $23.19 $152,256.26 

Navigation Data 
Converter 

73B62 6,292.7 $23.19 $145,927.71 

ARC 156 Radio 
Receiver/ 
Transmitter 

63271 5,487.8 $23.19 $127,262.08 

Wheel/Tire Assembly 13A6K 191.2 $23.19 $4,433.93 

Total MMH Cost $821,025.72 

Table X.  S-3B Viking MMH Costs (FY 1994) 

E.        SUMMARY 

This chapter presented the F/A-18C, E-2C and S-3B top five component MMH 

consumers at the O-level and I-level. The MMH costs to conventionally fault isolate, 

replace, and repair each of these components were presented in FY 1994 dollars. Chapter 
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IV presents an overview of expert systems and introduces the readers to expert systems 

users.  Also, the chapter reviews some of the benefits that expert systems provide. 
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IV.  EXPERT SYSTEMS OVERVIEW 

Since this thesis attempts to determine if there is a benefit from developing and 

applying expert systems for selective aircraft maintenance diagnostics, a brief discussion 

on their characteristics, uses, and benefits is in order. 

An expert system is a computer software program that attempts to replicate the 

knowledge and decision making capability that human experts have acquired. Human 

experts make decisions, recommendations, and perform tasks. Frequently, experts also 

train others to do these same tasks or make the same decisions. Expert systems may also 

be designed to perform such functions. (Bennett, 1983) A human expert is defined as 

a person who, through training and experience, can perform a task with a degree of skill 

that is beneficial to capture and distribute. The person filling this role is usually a top- 

level task performer although sometimes capturing and automating the judgment of even 

an average decision maker can be beneficial.  (Prerau, 1990) 

An expert system, like a human expert, often finds it necessary to extract 

additional information or data from the user by asking questions related to the problem. 

In many cases the system can also answer questions about why certain information is 

needed and the reasoning steps used to reach a conclusion or make the recommendations 

for solving the problem.  (Mockler, 1987) 

As compared to conventional computer programs, expert systems may be 

characterized by the following distinct features.  They: 

1. Make decisions 

2. Are based on heuristics3 

3. Are more flexible 

4. Can handle uncertainty 

3Heuristics are defined as rules of thumb or strategies used to solve problems. 
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5. Can work with partial information, inconsistencies, or partial 
beliefs 

6. Can provide explanations of results 

7. Use symbolic reasoning 

8. Are primarily declarative 

9. Separate control and knowledge (Prerau,1990) 

Expert systems are based primarily on symbolic reasoning about concepts rather 

than numeric calculations. The systems are programmed using declarative rather than 

procedural approaches. The programming techniques allow program control to be 

separated from domain4 knowledge. The use of declarative knowledge separated from 

program control often makes expert systems more flexible and easier to revise and update 

than conventional programs.  (Prerau, 1990) 

1. Components of an Expert System 

Any expert system consists of two components: the knowledge base and the 

inference engine (Powell, 1993). The knowledge base stores the facts and heuristics of 

domain experts. It also includes expert techniques on how and when to use these facts 

and heuristics. The inference engine provides for system control. It applies the expert 

domain knowledge (which is in the knowledge base) to what is known about the present 

situation (which is the information in the working memory) to determine new information 

about the domain.  (Prerau, 1990) 

2. Developing an Expert System 

According to a model developed by Prerau, development of an expert system 

consists of four elementary steps. The first step is to select a domain for the expert 

system. Step two is to select one or more recognized domain experts who have credibility 

in their field of work.   The third step is to determine the techniques, knowledge and 

4Domain is defined as the problem area of interest. 
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heuristics used by the expert(s) to perform tasks in their domain. The final step is to 

design and implement a portable computer program that embodies domain expert's 

techniques, knowledge and heuristics. 

This requires the acquisition of the knowledge that the expert has gained through 

years of experience in a selected domain and the implementation ofthat knowledge in an 

expert system computer program.  (Prerau, 1990) 

A.       USERS OF EXPERT SYSTEMS 

Expert systems are widely used by private industry and to a lesser degree by 

military organizations, both domestically and internationally. Automobile, aerospace, 

engineering, manufacturing and medical applications have been developed. 

The following paragraphs provide three specific examples of how expert systems 

have been employed in the aerospace field. 

1.        McDonnell Douglas Corporation 

Modern combat aircraft are highly complex weapon systems composed of hundreds 

of black boxes and thousands of wires. This complexity makes it difficult to isolate 

failures that occur within an aircraft. The difficulty in isolating a failure is magnified 

when an aircraft has just completed the manufacturing process.  (Lischke, 1992) 

The Technical Expert Aircraft Maintenance System (TEAMS) is an interactive 

system that supports the diagnosis of problems on new McDonnell Douglas aircraft. 

TEAMS is an expert system that provides the aircraft mechanic with the knowledge and 

experience information needed to successfully repair an aircraft. By helping mechanics 

make correct repair decisions, TEAMS reduces the aircraft costs by shortening the time 

needed to deliver the aircraft and reducing the inventory of spare parts required for 

preparing an aircraft for delivery. TEAMS is being developed for McDonnell Aircraft's 

Production Programs, including the F-15E and T-45TS. (Lischke, 1992) 
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2. Center for Artificial Intelligence Applications (CAIA) 

Turbine engine design and analysis is a complex engineering process that relies on 

previous field experience, testing and computer analysis. A prototype system known as 

ENgine Structural Analysis Consultant (ENSAC) was developed by CAIA to help an 

inexperienced structural analyst in (1) choosing the appropriate type of engine analysis to 

perform, (2) choosing what analysis code to use, (3) determining data requirements, and 

(4) reducing the number of common learning mistakes. (Papp, Braisted and Taylor, 1992) 

ENSAC parameter inputs include data from eight engine sections, a variety of 

engine components, five types of material and operating environmental conditions. 

Results of the prototype system suggests that structural analysts were able to 

increase their productivity. The ENSAC expert system uses: (1) menu-driven displays, 

(2)is programmed with software that enables analysts to learn in an unaided manner, and 

(3) uses familiar International Business Machines (IBM) personal computers. 

3. United States Air Force (USAF) 

F-16 Falcon electronic system's reliability and maintainability have increased since 

the aircraft's acceptance by the Air Force in the mid-1970s. However, when an electronic 

system or component fails, many man-hours are expended in troubleshooting, isolating 

and repairing the discrepancy. 

To assist USAF technicians to repair cannot duplicate (CND) and "Retest OK" 

(RETOK) flight control discrepancies, Honeywell developed the Flight Control 

Maintenance Diagnostic System (FCMDS) (Schroder, Smith, Bursch and Meisner 1992). 

A controlled experiment was conducted at Luke Air Force Base, Arizona, from 

September 1990 to June 1991. Some technicians used FCMDS and other technicians used 

technical manuals to isolate and diagnose F-16 CND and RETOK discrepancies. The 

experimental constraints that were imposed were that technicians had 45 minutes to 

complete the maintenance actions and the work had to be completed singlehandedly 

without any outside assistance. 

Results of the field test show enhanced levels of performance can be achieved, at 

all technician levels, by using a computer-aided maintenance system.  The average fault 
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isolation time was reduced by 26 percent and diagnostic accuracy was improved by 92 

percent over standard flight line practices. (Schroder, Smith, Bursch and Meisner, 1992) 

B.        BENEFITS OF USING EXPERT SYSTEMS 

Some of the benefits that can be realized by using expert systems include: (1) 

gains in productivity, (2) continuous improvement in quality, (3) improved level of human 

performance, (4) decreased time to perform on-equipment/off-equipment maintenance, (5) 

preservation of vital knowledge, and (6) reduction in part inventory level requirements. 

The following paragraphs examine specific industrial users that have reaped 

benefits of using an expert system. 

1. Dupont 

At Dupont's River Works in Sabine, Texas, technicians are trained to repair 

computers. Since computers seldom fail, the technicians' skills were lacking in hands-on 

computer repairs. To increase the technicians' proficiency in repairing computers, Dupont 

developed an expert system to continuously train technicians and to maintain a real-time 

database on repair procedures. The company saved $400,000 in the first year it used the 

expert system and the system paid for itself in three months. (Heizer and Render, 1993) 

2. Toyota Motor Company 

The computerization and increasing complexity of automobiles, combined with an 

insufficient number of qualified auto mechanics, proved disastrous for Toyota. 

Approximately 40 percent of the parts that were removed and replaced were done so 

unnecessarily and consumers were unhappy. To regain consumers' confidence, Toyota 

researched and developed an Atrex expert system. Atrex helped mechanics proficiently 

troubleshoot auto problems, increased their productivity ten fold by reducing the number 

of troubleshooting hours and most of all-saved Toyota's reputation. (Feigenbaum, 

McCorduck and Nii, 1989) 

37 



C.       SUMMARY 

This chapter provided a background and overview on expert systems. The 

following chapter addresses the issue of using expert systems to fault isolate 

systems/components of three aircraft. 
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MAINTENANCE MAN-HOUR COST SAVINGS USING EXPERT 
SYSTEMS 

This chapter introduces the concept of using expert systems to help fault isolate 

F/A-18C, E-2C and S-3B weapon systems and/or components. By using expert systems 

to assist in the fault isolation process, there is a strong possibility that O- and I-level 

maintenance man-hours (MMHs) could be reduced and MMH cost savings realized. 

The chapter first documents the researchers initial attempt to assess the potential 

savings in MMH using data from the NALDA and interviews with subject matter experts 

from the three weapon systems. It then lays out an empirical model that was developed. 

The paradigm can serve as a generic model for any type of aviation weapon system to 

calculate potential cost savings from using expert systems. 

To assist in determining the possibility of MMH cost savings, interviews were 

conducted with Navy enlisted aircraft maintenance technicians and technical represen- 

tatives. They were provided information on expert systems, their uses, associated benefits 

and how this technology could assist in correcting system/component malfunctions. 

The maintenance personnel were asked to screen maintenance action forms (MAFs) 

at their activity, conduct brainstorming sessions with their counterparts, review 

maintenance procedures and provide relative aircraft maintenance information to the 

authors. 

Because of the limited time allotted to thesis research in the curriculum (a six 

quarter program) and the fact that this research was not sponsored, thus restricting the 

amount of travel by the authors, some limitations and assumptions have been made. 

Based upon our professional judgment and experience as aircraft maintenance 

officers, it was assumed (through a limited sample) that the information provided by the 

technicians and representatives contacted would be similar to a broader fleet-wide 

response. The information is used throughout this chapter to calculate MMH cost savings 

and evaluate the potential use of expert systems in the Naval aviation maintenance field. 
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A.       KEY TERMS AND RATES USED TO CALCULATE MMH COST 
SAVINGS 

Key terminology is defined in order to provide the reader with a clear 

understanding of how MMH cost savings were calculated. The terms defined are: (1) 

MMHs, (2) fault isolation percentage, (3) pertinency rate, and (4) efficiency rate. 

1. MMHs 

MMHs are the total accumulated direct labor hours expended in performing a 

maintenance action. Direct MMHs are man-hours expended by assigned personnel to 

complete work. This includes the functions of preparation, inspection, disassembly, fault 

isolation, adjustment, replacement or reassembly of parts and calibration/tests required in 

restoring an item to a serviceable status. 

It also includes such tasks as checking out and returning tools, looking up part 

numbers in illustrated parts breakdown manuals, transmitting required information to 

supply points and completing associated documentation. (OPNAVINST 4790.2E, Volume 

V) 

2. Fault Isolation Percentage 

Fault isolation time is the total time expended in isolating the primary cause of 

malfunction. It is a subset of MMHs, and as such, is considered a percentage of MMHs. 

It has been the experience of the researchers that it is not unusual for fault isolation time 

to be 50-80 percent of the available MMHs expended. 

For example, if 100 MMHs are expended in returning a system/component to a 

serviceable status, and fault isolation time is 80 MMHs, the fault isolation percentage is 

80 percent (80 MMHs divided by 100 MMHs). This is a key point, since in this study 

the fault isolation percentage is a critical term used to calculate MMH cost savings. 

3. Pertinency Rate 

The pertinency rate is that portion of aircraft system/component failures to which 

an expert system would cover the fault isolation process. It includes the fault isolation 

MMH reduction rate that may be possible through the use of expert systems. Recall that 
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an expert system incorporates documented factual knowledge available to the average 

technician with the heuristic knowledge of a domain expert. For example, let us say that 

with factual knowledge, the average technician can correctly fault isolate 70 out of 100 

components. The heuristic knowledge of a domain expert will allow an additional 15 

components that previously could not be fault isolated to now be correctly diagnosed. 

Therefore, with an expert system, the average technician could correctly fault isolate 85 

out of 100 components.  The pertinency rate in this case would then be 85 percent. 

4.        Efficiency Rate 

The efficiency rate is the ability to correctly fault isolate aircraft system/component 

failures. It encompasses using either conventional methods (as described in Chapter III) 

or using expert systems. 

Supporters of expert systems claim the fault isolation accuracy rate can often be 

increased up to 92 percent (Schroeder, Smith, Bursch, Meisner, 1992). In other words, 

an expert system's fault isolation procedures would correctly diagnose a fault nine out of 

ten times. This is due in part because expert systems often provide instant access to a 

knowledge base that may store years of aviation maintenance expertise. 

An expert system's encapsulated knowledge can enable average technicians to 

rapidly resolve complex aircraft maintenance problems. Some would argue it would be 

overly optimistic to initially expect the fault isolation accuracy rate to reach the maximum 

of 92 percent (cited by Schroeder, et al), for a newly developed expert system. System 

accuracy would improve over time. Using prudent, but realistic figures to demonstrate 

MMH cost savings, the authors chose efficiency rates of 70 and 90 percent to apply to the 

examples in this chapter. Seventy percent on the low side was a realistic figure. After 

all, if one assumed a rate of 50 percent (only every other time would the expert system 

correctly fault isolate), it is unlikely that technicians would use such a system for long. 
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B. OVERVIEW ON CALCULATING AVERAGE MMH COST SAVINGS 

For the aircraft systems and components involved in deriving average MMH cost 

savings, the same steps were used to calculate the cost savings at the O- and I-levels. The 

average MMH cost saving differences were due to differences between aircraft MMHs, 

fault isolation percentages, and pertinency rates. 

As previously stated, MMHs were extracted from the NALDA database for the 

time frame October 1993 >.o September 1994. Fault isolation percentages and pertinency 

rates were provided by the previously mentioned technicians and technical representatives. 

The chosen e:fficienc> rates of 70 and 90 percent remain constant throughout this chapter 

to compute average MMH cost savings. 

Calculating Average MMH Cost Savings 

There are four simple steps in calculating the average MMH cost savings listed in 

the tables.  They are: 

• MMHs expended on a failed component multiplied by the applicable fault 
isolation percentage.  This provides the average fault isolation man-hours. 

• The average fault isolation man-hours are then multiplied by the applicable 
pertinency rate to derive the average pertinent man-hours. 

• The average pertinent man-hours are then multiplied by the applicable 
efficiency rate.  This produces the average man-hour savings achievable. 

• The average man-hour savings achievable figures are then multiplied by the E-5 
composite labor rate ($23.19 FY 1994 dollars in this case) to derive average 
MMH cost savings. 

C. F/A-18C HORNET AVERAGE MMH COST SAVINGS 

Practicality, convenience, time zones and close geographic proximity pointed the 

authors in the direction of NAS Lemoore to gather research data. The AIMD assistant 

aircraft maintenance officer was a former NPS graduate and familiar with the topic of 
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expert systems.  He offered the quality assurance/analysis division as the best choice, in 

terms of experience and expertise, to assist the authors with data assimilation. 

AIMD quality assurance representatives (QARs) provided the Hornet's fault 

isolation percentages and pertinency rates at the O- and I-levels. It is the author's 

experience that most QARs at any AIMD have had previous O-level experience. Also, 

these top performers are often among the most experienced and senior technicians in the 

organization. QARs familiar with the various O- and I-level components consulted with 

respective maintenance technicians who fault isolate, replace, and repair the specific 

components in question. 

1. O-Level Cost Savings 

At the O-level, technicians determined that expert systems would not be applicable 

to fault isolate the top five component MMH consumers. Their experience indicated the 

top five component cause of malfunctions (corrosion, nicked/chipped, cracked/crazed, 

wear, defective connections) were readily identified using conventional methods. 

Therefore, no fault isolation percentages or pertinency rates applied at the O-level. 

As a result, no F/A-18C Hornet average MMH cost savings were computed for the O- 

level. 

2. I-Level Cost Savings 

At the I-level, the first three component MMH consumers were associated with the 

weapons control system (WUC 74). These components included the APG65 radar 

transmitter, APG65 receiver exciter and APG65 antenna. The fourth and fifth leading 

component MMH consumers were the ASW44 pitch-roll-yaw computer and the ARC 

radio receiver/transmitter. The technicians estimated they spent 25 percent of their time 

fault isolating these components. 

Pertinency rate estimates varied amongst components. For the APG65 

components, technicians assigned a 75 percent pertinency rate, indicating that an average 

technician or domain expert assistance was required 75 percent of the time in fault 

isolation. They estimated a 50 percent pertinency rate for the ASW44 pitch-roll-yaw 

computer and a 30 percent pertinency rate for the ARC radio receiver/transmitter. This 
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is due to the greater effectiveness of current diagnostic methods, repair manuals and less 

complexity involved with these systems. 

Table XI lists the cost saving estimates for the F/A-18C Hornet if expert systems 

were employed at the I-level. The computations yielded an annual MMH cost savings 

range of $108,396.34 to $139,366.73 using 70 and 90 percent expert system efficiency 

rates. The three APG65 components account for approximately 84 percent of this savings, 

or between $91,225.40 and $117,289.80. 

D.       E-2C HA WKEYE AVERAGE MMH COST SAVINGS 

Again, practicality, convenience, time zones and geographic proximity pointed the 

authors in the direction of NAS Miramar as the logical choice for gathering E-2C 

Hawkeye data. QARs from AIMD NAS Miramar provided the Hawkeye 's maintenance 

information. These technicians possessed a comprehensive knowledge and experience 

base of the Hawkeye's avionics, power plants, airframes and electrical systems at the O- 

and I-levels. 

In addition to O-level avionics/armament and quality assurance/analysis division 

experience, the I-level avionics technician has supervised the operation and maintenance 

of Radar Countermeasures (RADCOM) test benches and module/micro-miniature repair 

branch at the I-level. He was familiar with each of the top five component MMH 

consumers and their respective fault isolation/replacement/repair procedures at the I-level. 

1. O-Level Cost Savings 

The O-level's top five component cause of malfunctions were not considered 

overly complex to fault isolate. Based on the technicians' input, an expert system was 

not needed to help fault isolate these five systems/components. Chapter III, Table V may 

be consulted to refresh the readers' memory of the Hawkeye's O-level maintenance data. 

The propeller/power plant systems technicians foresaw no expert system applica- 

bility for the variable pitch propeller, power plant installation/engine assembly or propeller 

control assembly.   These were the first, second and fifth highest MMH consumers, 
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respectively. They believed the MIMs adequately document the commonly encountered 

malfunctions and corrective action procedures for the related systems/components. 

The electrical systems technician did not feel expert system technology was 

applicable to the utility light, the third highest MMH consumer. This was due to the 

simplistic light design and the ease to rapidly correct related malfunctions. 
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Component APG65 Radar APG65 APG65 ASW44 ARC Radio 
Transmitter Rcvr Exciter Antenna Computer Rcvr/Trans 

MMHs 11,493.5 10,579.8 7,898.7 5,570.3 4,819.9 

Fault Isolation 
Percentage 0.25 0.25 0.25 0.25 0.25 

Average Fault 2,873.38 2,644.95 1,974.68 1,392.58 1,204.98 
Isolation Man-Hours 

Pertinency Rate 0.75 0.75 0.75 0.50 0.30 

Average Pertinent 2,155.03 1,983.71 1,481.01 696.29 361.49 
Man-Hours 

Efficiency Rates 0.70 0.70 0.70 0.70 0.70 
0.90 0.90 0.90 0.90 0.90 

Average Man-Hour 

Savings Achievable 
Efficiency Rate=0.70 1,508.52 1,388.60 1,036.70 487.40 253.04 
Efficiency Rate=0.90 1,939.53 1,785.34 1,332.91 626.66 325.34 

E-5 Composite $23.19 $23.19 $23.19 $23.19 $23.19 
Labor Rate 

Average MMH 

Cost Savings ■ — 

Efficiency Rate=0.70 $34,982.62 $32,201.61 $24,041.17 $11,302.83 $5,868.11 
Efficiency Rate=0.90 $44,977.66 $41,402.06 $30,910.08 $14,532.22 $7,544.71 

Table XI.       F/A-18C Hornet Average MMH Cost Savings 
Using Expert Systems at the I-Level (FY 
1994) 
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The airframes system technician also felt that an expert system was not applicable 

to the rudder system, the fourth highest MMH consumer. This was due to the nature of 

commonly encountered malfunctions and the adequacy of MMs to help fault isolate/ 

replace/repair rudder system components. 

2.        I-Level Cost Savings 

The I-level avionics technician foresaw potential MMH cost savings for the two 

azimuth range indicators (WUCs 726J2, 726J4) if expert systems were used at the I-level. 

He indicated that 65 percent of the MMHs were attributable to fault isolation. 

These items are fairly time consuming to diagnose. A 35 percent pertinency rate was 

assigned for the expert system. The MIMs and current diagnostic methods are fairly 

effective for these components. The combined MMH cost savings for these two 

components would then yield between $27,190.51 and $34,959.23 annually. 

Records indicate very little time was spent fault isolating the AIC14 ICS control 

(approximately 10 percent). This was due to rapid and effective diagnosis when the 

RADCOM test bench was used. Thus, expert systems were not needed to facilitate the 

ICS control maintenance effort. Fault isolation percentages and pertinency rates were not 

applicable. 

The digital data converter and computer are also tested on the RADCOM test 

benches. Technicians estimated a 40 percent fault isolation rate of overall MMHs and a 

50 percent pertinency rate due to the components' complexity. The combined MMH cost 

savings for these components only yield $66.88 to $85.99 annually because the 

components failed infrequently. 

The azimuth range indicator components are part of the larger main display unit 

(MDU) systems in the aft crew area of the E-2C. These units are being replaced by the 

newer enhanced main display unit (EMDU) systems. There was not any available EMDU 

data at NALDA since these units were still under contract support. 

AIMD did not possess the repair capability for the EMDU systems, but there was 

a tentative test program system anticipated for the RADCOM test benches. This means 
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the units are presently beyond the repair capability of I-level maintenance and are 

forwarded to the D-level for repair. 

At the D-level, Grumman Aerospace Company technical representatives perform 

the diagnosis and repair of EMDUs using laptop computer technology. The avionics 

technician anticipated increased EMDU fault isolation percentages and pertinency rates 

upon entrance into the AIMD repair pipeline. Table XII displays the potential Hawkeye 's 

MMH cost savings at the I-level. 

E.        S-3B VIKING AVERAGE MMH COST SAVINGS 

NAS North Island was chosen as the site for gathering S-3B data for the same 

reasons as the F/A-18C and E-2C, its geographic closeness. The authors chose VS-33 as 

the representative O-level activity. We knew the maintenance/material control officer 

(MMCO) and the squadron was not deployed. The MMCO recommended that the authors 

contact Mr. Jim Vizzard (Lockheed technical representative) at AIMD. He has a 

reputation as the Vikings' I-level expert. 

1. O-Level Cost Savings 

The O-level avionic and electrical system technicians indicated an expert system 

would be extremely beneficial in fault isolating the ASW33 flight data computer broken 

wire/defective contact/connection cause of malfunction. 

They felt an expert system would be beneficial because the number of MIMs that 

must be consulted, to trace out computer wire bundle runs, made fault isolation a complex 

and time consuming process. Using an expert system would reduce the MIM require- 

ments.  It was believed that fault isolation time could be significantly reduced. 

Also, by using diagrams and pictures in the expert system, the location of plugs 

and connectors could be readily identified. This would be especially helpful to 

inexperienced technicians. It would allow them to rapidly locate potential computer 

related problems without the aid of an experienced technician as is often the case now. 
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Component Az Range AIC14 ICS Az Range Dgtl Data Dgtl Data 
Indicator Control Indicator Converter Computer 

MMHs 7,160.5 2,491.9 202.2 17.0 3.6 

Fault Isolation 0.65 0.10 0.65 0.40 0.40 
Percentage 

Average Fault 4,654.33 249.19 131.43 6.80 1.44 
Isolation Man-Hours 

Pertinency Rate 0.35 0.00 0.35 0.50 0.50 

Average Pertinent 1,629.01 0.00 46.00 3.40 0.72 
Man-Hours 

Efficiency Rates 0.70 0.70 0.70 0.70 0.70 
0.90 0.90 0.90 0.90 0.90 

Average Man-Hour 

Savings Achievable 
Efficiency Rate=0.70 1,140.31 0.00 32.20 2.38 0.50 
Efficiency Rate=0.90 1,466.11 0 41.40 3.06 0.65 

E-5 Composite $23.19 $23.19 $23.19 $23.19 $23.19 
Labor Rate 

Average MMH 

Cost Savings   
Efficiency Rate=0.70 $26,443.78 $0.00 $746.73 $55.19 $11.69 
Efficiency Rate=0.90 $33,999.15 $0.00 $960.08 $70.96 $15.03 

Table XII.     E-2C Hawkeye Average MMH Cost Savings Using Expert 
Systems at the I-Level (FY 1994) 
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A third expert system benefit could be the reduction of A-799 WRAs that were 

unnecessarily removed and replaced in fault isolating ASW33 flight data computer 

discrepancies. A-799s contributed only three percent to the total ASW33 flight data 

computer failures (34 A-799s divided by 1155 ASW33 flight data computer failures in 

FY 1994). 

The technicians estimated a fault isolation percentage of 60 percent and a 

pertinency rate of 80 percent due to system complexity and the effectiveness of technical 

publications. Based on these estimates, the ASW33 flight data computer MMH yearly 

cost savings would be between $21,014.59 and $27,018.76. 

The switch logic unit and integrated radio controller were related system units. 

They were both subject to the same broken wire/defective contact/connection cause of 

malfunction. Fault isolation time could be reduced by the use of an expert system 

according to the technicians. Their reasoning was similar to the previous fault isolation 

problem for the ASW33 flight data computer. In addition, it was also pointed out that 

expert system usage would be beneficial in fault isolating the "no output" cause of 

malfunction. 

This analogy seemed logical because "no output" was a leading cause of failure 

for the switch logic unit and integrated radio controller. Technicians stated that the "no 

output" malfunction routinely consumed a large amount of MMHs. Their experience 

indicated that the fault isolation process was lengthy in trying to narrow the common 

failure causes to such items as a defective circuit breaker, blown fuse, open ground, bad 

power supply or combination. 

An expert system that stores the indications associated with the causes of 

component failure and is able to determine the correct remedies to make the systems or 

components serviceable would be valuable. Both technicians agreed such technology 

could reduce the number of MMHs. 

For example, with a fault isolation percentage and pertinency rate for the Viking 

switch logic unit and integrated radio controller of 80 percent each, the combined MMH 
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cost savings would be between $45,387.99 to $58,355.98.  Table XIII lists the Viking's 

potential O-level cost savings. 

2. I-Level Cost Savings 

The I-level avionics expert was a Lockheed technical representative assigned to 

AIMD North Island. He spent most of his time fault isolating WRAs/SRAs. He has been 

involved with S-3B repair for many years. His current specialty is avionics repair using 

the Versatile Avionics Shop Test (VAST) bench system. VAST is capable of diagnosis 

and repair of a wide variety of aircraft weapon systems. 

VAST benches exist both ashore and afloat and have been in existence for many 

years. They are physically large and complex, requiring considerable set-up time. They 

are scheduled to be replaced by the modern Consolidated Automated Support System 

(CASS) in November 1995. 

Out of the "Top 5" Viking I-level component MMH consumers, the first four 

WRAs are diagnosed and repaired using the VAST test bench. The four include the 

ASW33 flight data computer, the switch logic unit, the navigational data converter and 

the ARC 156 radio receiver/transmitter. All of these components suffer from similar 

malfunctions: a broken wire/ defective contact/connection, failed diagnostic/automatic 

tests, and improper adjustment/alignment. These malfunctions produce the majority (over 

93 percent) of associated discrepancies for these components. 

Since the technical representative spent most of his time fault isolating 

WRAs/SRAs on the VAST bench, he recommended fault isolation time as 60 percent of 

the MMHs. His pertinency rate was estimated to be 15 percent. He anticipated more 

benefits from expert systems once the new CASS replaces the much older VAST bench. 

The fact that the VAST bench will soon be replaced is a prime reason for not considering 

development of an expert system for it. There is neither the time necessary for 

development nor a large enough return on investment. 

Calling upon the technical representative's comprehensive experience with the S- 

3B Viking, an inquiry was also made into the applicability of an expert system for 

diagnosing the  fifth  leading  MMH  consumer,  wheel/tire  assemblies  and  related 
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Component ASW33 Flight Switch Logic Integrated Radio 

Data Computer Unit Controller 

- 

MMHs 2,697.0 2,489.4 1,879.4 

Fault Isolation 0.60 0.80 0.80 

Percentage 

Average Fault 1,618.20 1,991.52 1,503.52 

Isolation Man-Hours 

Pertinency Rate 0.80 0.80 0.80 

Average Pertinent 1,294.56 1,593.22 1,202.82 

Man-Hours 

Efficiency Rates 0.70 0.70 0.70 

0.90 0.90 0.90 

Average Man-Hour 

Savings Achievable 

Efficiency Rate=0.70 906.19 1,115.25 841.97 

Efficiency Rate=0.90 1,165.10 1,433.89 1,082.53 

E-5 Composite $23.19 $23.19 $23.19 

Labor Rate 

Average MMH 

Cost Savings 

Efficiency Rate=0.70 $21,014.59 $25,862.68 $19,525.31 

Efficiency Rate=0.90 $27,018.76 $33,252.01 $25,103.97 

Table XIII.    S-3B VikingMMH Cost Savings Using Expert Systems 
at the O-Level (FY 1994) 
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components. He believed these items were solvable using conventional fault isolation 

methods rather than expert systems. This makes sense. The majority of conventional 

fault isolation methods used on these components are eddy-current and magnetic particle 

inspections or the MIMs.  They provide an adequate fault isolation capability. 

Based upon the information related to the first four top MMH consumers at the 

I-level, expert systems incorporation could save an estimated $39,218.72 to $50,424.06 

in MMH costs annually. While this is not overwhelming savings, it is primarily due to 

the current VAST limitations (20 year old design, complexity, lengthy set up and run 

time). Benefits are anticipated to increase with the introduction of CASS. Table XIV 

illustrates the procedures used for determining MMH cost savings. 

After examining the results of the work that produced Tables XI-XIV, the authors' 

concluded that the method used had weaknesses. The data was extrapolated from 

NALDA and fault isolation percentages and pertinency rates were based on phone 

interviews. The question was raised as to whether this was a truly objective and 

quantitative method or was the method too subjective and qualitative. It sorted out to be 

a combination of both methods. 

Much was learned in the gathering of data and interviews. In critically examining 

the initial effort, the researchers were able to formulate a basic empirical model for 

estimating potential MMH cost savings by using expert systems to assist in the fault 

isolation process. A S-3B Viking I-level domain expert assisted in the development of the 

model and furnished data used in the following example. 

F.        THE SfflRKEY-SCHANZ EXPERT SYSTEM MAINTENANCE MAN- 
HOUR COST SAVINGS MODEL 

In the course of this research, it became evident that the S-3B Viking's I-level 

process presented an opportunity for developing an empirical model that could be used 

to assess potential MMH cost savings when an expert system is incorporated into the 

diagnostic process. Each of the top four I-level MMH consumers for the S-3B is repaired 
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Component ASW33 Flight Switch Logic Navigation Data ARC156 Radio 
Data Computer Unit Converter Rcvr/Trans 

MMHs 8,498.2 6,565.6 6,292.7 5,487.8 

Fault Isolation 0.60 0.60 0.60 0.60 
Percentage 

Average Fault 5,098.92 3,939.36 3,775.62 3,292.68 
Isolation Man-Hours 

Pertinency Rate 0.15 0.15 0.15 0.15 

Average Pertinent 764.84 590.90 566.34 493.90 
Man-Hours 

Efficiency Rates 0.70 0.70 0.70 0.70 
0.90 0.90 0.90 0.90 

Average Man-Hour 

Savings Achievable 
Efficiency Rate=0.70 535.39 413.63 396.44 345.73 
Efficiency Rate=0.90 688.35 531.81 509.71 444.51 

E-5 Composite $23.19 $23.19 $23.19 $23.19 
Labor Rate 

Average MMH 

Cost Savings 
Efficiency Rate=0.70 $12,415.62 $9,592.14 $9,193.45 $8,017.51 
Efficiency Rate=0.90 $15,962.93 $12,332.76 $11,820.14 $10,308.23 

Table XIV.    S-3B Viking Average MMH Cost Savings Using Expert 
Systems at the I-Level (FY 1994) 
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on the VAST bench by maintenance technicians. In a significant number of cases, a 

domain expert is required to assist in determining the fault. In this case, the domain 

expert (a Lockheed technical representative from NAS North Island) explained that he 

would group faulty components into four categories, based upon the amount of time 

consumed in fault isolation. The four categories have been designated as average, 

difficult, complex and unrepairable. 

An average component is one which current procedures (i.e., publications, test 

programs, and average technician aptitude) result in the successful isolation and repair of 

the malfunction. For model purposes, the authors designated the MMH associated with 

an average component as factor A. 

A difficult component is a component requiring factor A MMHs, plus the 

additional fault isolation time of a human expert (highly experienced Naval technician or 

NETS/CETS technical representative) to successfully repair the component. A difficult 

component's MMHs are designated as factor B. 

A complex component refers to a component which is eventually successfully 

repaired at the I-level, requiring both factors A and B, plus additional fault isolation time 

by a domain expert.  A complex component's MMHs are designated as factor C. 

An unrepairable component refers to a component that is considered unrepairable 

at the I-level. It is comprised of the time associated with factors A, B, and C, plus 

additional time up to a maximum preset number of fault isolation hours. These 

components are considered beyond the organization's repair capability and are forwarded 

to the next higher repair facility. They are termed "BCM", beyond the capability of 

maintenance. MMHs associated with an unrepairable component is designated as factor 

D. 

The Expert System MMH Cost Savings Model that follows consists of an eight 

step process. The discussion below defines each step in the model. S-3B data is then 

used to demonstrate the application of each step. 
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Step 1 

Assign fault isolation times to each component category (factors A, B, C, 
and D). The time assignments are determined by grouping components 
in the four categories and analyzing the fault isolation times for each 
category. While the example that follows uses set times, the reader 
should understand that these times may vary for other aircraft systems 
based upon real world experience and practices. 

For the S-3B top four MMH consumers, average components (factor A) make up 

60 percent of all components. Average components are fault isolated, on average, in one 

hour. Malfunctions of this type consist primarily of components which involve straight- 

forward diagnosis and replacement of a single SRA. 

Difficult components (factor B) make up 30 percent of all components. The 

average fault isolation time for this category was three hours. Thus, total fault isolation 

time averages four hours (1 hour (A) + 3 hours (B)) for components in this category. 

These components often entail some ambiguities in the fault isolation process, sometimes 

being isolated to more than one SRA.  They usually involve basic SRA replacement. 

Complex components (factor C) make up approximately five percent of all 

components. The fault isolation time for this category was two additional hours. Total 

fault isolation time averages six hours (1 hour (A) + 3 hours (B) + 2 hours (C)) for 

components in this category. For example, these discrepancies may entail difficult to 

diagnose chassis wiring problems.  But they are still repairable if adequate expertise is 

available. 

Unrepairable components (factor D) make up five percent of the components. The 

fault isolation time policy for these components allows for an additional two hours before 

the components are determined to be unrepairable. Total fault isolation time for 

unrepairable components averaged eight hours (1 hour (A) + 3 hours (B) + 2 hours (C) 

+ 2 hours (D)). These components may involve chassis wiring problems. Fault isolation 

is complex and time consuming, often requiring more than eight hours to accomplish. 

After eight hours, the technical representative deems the component beyond economical 

repair at the I-level and the component is forwarded to the D-level. 
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Step 2 

Assign a MMH cost per hour for each of the fault isolation factors 
defined in step 1. 

For our model, the MMH cost per hour is referred to as factor M. The MMH cost 

per hour for the various military paygrades can be determined by consulting the 

NAVCOMPT Notice 7041. Also, Table I located in Chapter II of this study, depicts the 

MMH cost per hour calculation process. 

The MMH cost per hour is $23.19 (FY 1994) based on an E-5 paygrade for this 

example model. 

Step 3 

Determine the total number of component failures over a given time 
frame. 

The total number of component failures is designated as factor N. The total 

number of failures can be extracted from the NALDA data base. The time frame used 

to determine N is assigned by the person conducting the study. 

The example model uses 1,000 failed components over a one year period. 

Step 4 

Allocate the percentage of the total number of component failures to 
each of the four categories. 

A domain expert would determine these percentages based on personal experience 

with the test facilities, technicians, and components. The domain expert would also 

consider local policy as to when components are considered beyond economic repair of 

the maintenance organization. 

For this model the following variables are assigned. Pj is the percentage of failed 

components associated with factor A. P2 is the percentage of failed components 

associated with factor B. P3 is the percentage of failed components associated with factor 

C. P4 is the percentage of failed components associated with factor D. 

As discussed under step 1, the domain expert assigned a category breakout of the 

following in our example: P, is 60 percent (i.e., 60 percent of all the components were 
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categorized as average, having a fault isolation time of one hour), P2 is 30 percent, P3 is 

5 percent, and P4 is 5 percent. 

Step 5 

Determine the Total MMH Cost. 

This is a two step process. First each set of category variables (A, M, N, P,), (B, 

M, N, P2), (C, M, N, P3), (D, M, N, P4) is multiplied by its respective variables. This will 

provide a MMH cost per category. Secondly, the four categories are summed together. 

This produces the Total MMH Cost. The Total MMH Cost is represented by the 

following. 

Total MMH Cost    = (A x M x N x P,) 

+ (B x M x N x P2) 

+ (C x M x N x P3) 

+ (D x M x N x P4) 

If we use the example data used in the discussion, the following applies: 

Factor A=1 Hr   Factor M=$23.19 Factor N=1,000    Pn = 60% 

Factor B=4 Hrs P2 = 30% 

Factor C=6 Hrs P3 = 5% 

Factor D=8 Hrs P4 = 5% 

Total MMH Cost     = (1 x $23.19 x 1,000 x 60%) 

+ (4 x $23.19x1,000x30%) 

+ (6 x $23.19 x 1,000 x 5%) 

+ (8 x $23.19 x 1,000 x 5%) 

= $57,975.00 
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This amount is the total MMH cost at the I-Ievel for all of the top four 

components. 

Step 6 

Determine the impact of applying an expert system to assist in the fault 
isolation process. 

This figure will be a percentage of the overall fault isolation time for each 

category (factors A, B, C, D). The reduced factors are designated as: factor Ax, factor 

Bj, factor Cj, and possibly factor DL 

The domain expert believed that for average components, factor A was already at 

a minimum in terms of fault isolation efficiency. It would benefit little from expert 

system technology. However, when applying an expert system to the fault isolation 

process, we would expect that each category of component may expect some improvement 

(i.e.,reduction) in the fault isolation time. This is because, even for average components, 

when examining the process domain experts will likely add some heuristics to the fault 

isolation process, thus improving it. Difficult and complex components (factors B and 

C) are the categories that would benefit the most from expert system technology for the 

S-3B components used in this example. Previous experience of the thesis advisor suggests 

that factor B's and factor C's fault isolation times could be expected to be reduced, in the 

range of 30 to 90 percent by applying the knowledge of an expert system. 

First, using a conservative approach based on the assumption that expert system 

technology would reduce the fault isolation time of factor B and factor C each by 30 

percent, factors B! and Q are calculated as follows: 

Factor A =1 Hr = Factor A, 

Factor B = Factor A +3 Hrs =4 Hrs 

Factor B, =1 Hr +3 Hrs(100%-30%)=1 Hr +2.1 Hrs =3.1Hrs 

Factor C = Factor A + Factor B +2 Hrs =6 Hrs 

Factor C,       =1 Hr +3 Hrs(100%-30%)   +2 Hrs(100%-30%)   =1 Hr + 
2.1 Hr +1.4 Hrs=4.5 Hrs 
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One should note that the application of an expert system to difficult or complex 

fault isolation tasks results in an overall 22.5 percent and 25 percent reduction in factors 

B and C respectively. 

Using a somewhat more aggressive, but still reasonable approach of a 70 percent 

reduction through the use of an expert system, the following figures result: 

Factor A        =1 Hr = Factor Ax 

Factor B        = Factor A +3 Hrs =4 Hrs 

Factor Bx       =1 Hr +3 Hrs(100%-70%) 

= 1 Hr+0.9 Hrs =1.9Hrs 

Factor C        = Factor A + Factor B +2 Hrs = 6 Hrs 

Factor C,       =1 Hr +3 Hrs(100%-70%)   +2 Hrs(100%-70%) 

= 1 Hr +0.9 Hrs +0.6 Hrs = 2.5 Hrs 

Again, the use of an expert system shows considerable potential reduction in 

fault isolation. At a 70 percent value, overall fault isolation times decline by 52.5 

percent and 58.3 percent for difficult and complex components. 

Step 7 

Calculate the Revised Total MMH Cost. 

The Revised Total MMH Cost is calculated using steps 1 through 5. One must 

ensure the new A„B„C„ and D1 factors are used. When applicable, the recalculated 

cost model then becomes: 

Revised   MMH Cost      = (A x M x N x P,) 

+ (B,xMxNxP2) 

+ (Cj xMxNxP3) 

+ (DxMxNxP4) 
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Using the 30 percent improvement in fault isolation gained using an expert system, the 

revised MMH cost would be as follows: 

Example data: 

Factor A = 1 Hr Factor M = $23.19 Factor N = 1,000 P, = 60% 

Factor B, = 3.1 Hrs P2 = 30% 

Factor C, = 4.5 Hrs P3 = 5% 

Factor D = 8 Hrs P4 = 5% 

Revised MMH Cost = (1.0 x $23.19 x 1,000x60%) 

+ (3.1 x $23.19 x 1,000x30%) 

+ (4.5 x $23.19 x 1,000 x 5%) 

+ (8.0 x $23.19 x 1,000 x 5%) 

= $49,974.45 

The MMH cost savings from using an expert system estimated to provide a 30 

percent would be 13.8 percent. Recall this savings is figured using only the top four 

MMH component consumers. Using the higher 70 percent factor, the result would be: 

Factor A = 1 Hr    Factor M = $23.19 Factor N = 1,000 P, = 60% 

Factor B1 = 1.9 Hrs P2 = 30% 

Factor C, = 2.5 Hrs P3=  5% 
Factor D = 8 Hrs P4= 5% 

Revised MMH Cost = (1.0 x $23.19 x 1,000x60%) 

+ (1.9 x $23.19 x 1,000x30%) 

+ (2.5 x $23.19 x 1,000 x 5%) 

+ (8.0 x $23.19 x 1,000 x 5%) 

- 
= $39,307.05 
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The MMH cost savings from using an expert system estimated to provide a 70 

percent would be 32.2 percent. Recall this savings is figured using only the top four 

MMH component consumers. 

Step 8 

Determine the Expert System MMH Cost Savings. 

The Expert System Cost Savings is determined by subtracting the Revised MMH 

Cost from the Total MMH Cost, i.e.,Expert System MMH Cost Savings =Total MMH 

Cost - Revised MMH Cost. 

The S-3B I-level model expert system MMH cost savings is derived as follows: 

Using a 30 percent MMH reduction: 

Expert system  MMH cost savings   = 

$57,975.00 

$49,974.45 

$ 8.000.55 savings 

Using a 70 percent MMH reduction: 

Expert system  MMH cost savings   = 

$57,975.00 

$39,307.05 

$18.667.95  savings 

Table XV summarizes the MMH and MMH cost savings from using an expert 

system to fault isolate I-level discrepancies on the S-3B. 

Factors D and Dl are assumed to be constant and beyond the range of expert 

system improvement since these components are beyond the economical repair capability 

of the domain expert. 
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Original 
MMHs 

MMHs 

Saved 

MMH 
Cost 
Per 

Hour 

Cost 
Savings 

%of 
MMHs 
Saved 

Expert System 
Impact of 30% 

2,500 
MMHs 

345 
MMHs 

$23.19 $8,000.55 13.8% 

Expert System 
Impact of 70% 

2,500 
MMHs 

805 
MMHs 

$23.19 $18,667.95 32.2% 

Table XV.     Expert System Impact on S-3B MMHs and MMH 
Cost Savings 

Another way is to look at the savings on a per component basis. The example 

model consists of 1,000 components. The average cost savings per component is as 

follows: 

The average MMH cost per component was $57.98. 

Using a 30 percent MMH reduction: 

$8,000.55/1,000 components = $8.00/component. 

This represents a 13.8 percent savings per component 

Using a 70 percent MMH reduction: 

$18,667.95/1,000 components = $18.67/component 

This represents a 32.2 percent savings per component. 
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The examples used in the model are presented, in condensed versions, for both a 

30 and 70 percent MMH reduction in Figures 1 and 2 at the end of this chapter. 

G.       SUMMARY 

This chapter documented the potential applicability of expert systems to shorten 

the fault isolation time for specific aircraft components. It documents the initial approach 

taken. It was presented to serve as a demonstration of the kind of path future researchers 

may initially wish to consider, but as was learned in this research, they should not. The 

second portion of the chapter presented an empirical model that was developed to estimate 

the MMH cost savings from using expert systems technology. Chapter VI delineates 

research questions and answers, conclusions, lessons learned, and recommendations for 

further research. 
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Total MMH Cost = (AxMxNxP,) 
+ (B x M x N x P2) 
+ (C x M x N x P3) 
+ (D x M x N x P4) 

Step 1 Step 2                          Step 3 Step 4 

Factor A =  1.0 Hour M = $23.19                   N = 1,000 ^=60% 
Factor B = 4.0 Hours P2 = 30% 
Factor C = 6.0 Hours P3= 5% 
Factor D = 8.0 Hours P4= 5% 

Step 5 
Total MMH Cost =  (1.0 x $23.19x1,000x60%) 

+  (4.0 x $23.19 x 1,000 x 30%) 
+  (6.0 x $23.19 x 1,000 x 5%) 
+ (8.0 x $23.19 x 1,000 x 5%) 
= $57,975.00 

Step 6 

If B       = Factor A + 3 Hrs, then 

B1       = 1 Hr + 3 Hrs(100%-30%) 
= 1 Hr + 2.1 Hrs 
= 3.1 Hrs 

If C      = Factor A + Factor B + 2 Hrs, then 

C,      = 1 Hr + 3 Hrs(100%-30%) + 2 Hrs(100%-30%) 
= 1 Hr + 2.1 Hrs+1.4 Hrs 
= 4.5 Hrs 

Step 7 

Revised MMH Cost     = (AxMxNxP,) 
+ (B1 x M x N x P2) 
+ (C, x M x N x P3) 
+ (DxMxNxPJ 

Revised MMH Cost = (1.0 x $23.19x1,000x60%) 
+ (3.1 x $23.19 x 1,000 x 30%) 
+ (4.5 x $23.19 x 1,000 x 5%) 
+ (8.0 x $23.19 x 1,000 x 5%) 
= $49,974.45 

Step 8 

Expert System MMH Cost Savings = Total MMH Cost - Revised MMH 
Cost 

= $57,975.00 - $49,974.45 
= $8.000.55 

Figure 1. 30 Percent MMH Reduction (Example Model) 
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Total MMH Cost 

Step 1 

Factor A 
Factor B 
Factor C 
Factor D 

= 1.0 Hour 
= 4.0 Hours 
= 6.0 Hours 
= 8.0 Hours 

= (AxMxNxP,) 
+ (B x M x N x P2) 
+ (C x M x N x P3) 
+ (D x M x N x P4) 

Step 2 

M = $23.19 

Step 3 

N = 1,000 

Step 4 

^=60% 
P2 = 30% 
P3= 5% 
P4= 5% 

Step 5 

Step 6 

Step 7 

Total MMH Cost = (1.0 x $23.19 x 1,000 x 60%) 
+ (4.0 x $23.19 x 1,000 x 30%) 
+ (6.0 x $23.19 x 1,000 x 5%) 
+ (8.0 x $23.19 x 1,000 x 5%) 
= $57,975.00 

If B      = Factor A + 3 Hrs, then 
B, = 1 Hr + 3 Hrs(100%-70%) 

= 1 Hr +0.9 Hrs 
= 1.9 Hrs 

If C      = Factor A + Factor B + 2 Hrs, then 
C, = 1 Hr + 3 Hrs(100%-70%) + 2 Hrs(100%-70%) 

= 1 Hr + 0.9Hrs + 0.6 Hrs 
= 2.5 Hrs 

Revised MMH Cost 

Revised MMH Cost 

= ( A x M x N x P,) 
+ (B, x M x N x P2) 
+ (C1xMxNxP3) 
+ ( D x M x N x P4) 

= (1.0 x $23.19 x 1,000 x 60%) 
+ (1.9 x $23.19 x 1,000 x 30%) 
+ (2.5 x $23.19 x 1,000 x 5%) 
+ (8.0 x $23.19 x 1,000 x 5%) 
= $39,307.05 

Step 8 

Expert System MMH Cost Savings =    Total    MMH    Cost 
Cost 

= $57,975.00 - $39,307.05 
= $18.667.95 

Revised    MMH 

Figure 2.  70 Percent MMH Reduction (Example Model) 
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VI. RESEARCH QUESTIONS AND ANSWERS/CONCLUSIONS/ 
LESSONS LEARNED/RECOMMENDATIONS 

Naval aviation maintenance managers are responsible for ensuring aircraft 

maintenance continues to be performed in a safe, efficient manner. This proves to be a 

continual challenge considering declining DOD resources, the decommissioning of aircraft 

squadrons and a general reduction in forces. 

Maintenance managers must continually seek new ways to optimize scarce 

resources and assist technicians with maintaining aircraft systems/components at all three 

maintenance levels. Currently, aviation maintenance technicians and technical 

representatives use conventional fault isolation methods to return aircraft 

systems/components to a functional status. 

These conventional fault isolation methods consume an enormous amount of 

MMHs. Since both authors are experienced aviation maintenance managers, the decision 

was made to investigate a potential resource to possibly reduce the consumption of 

MMHs. This is why the authors chose to introduce the concept of applying expert 

systems to help diagnosis aircraft discrepancies. The primary objective of this research 

was to determine a process for determining the impact on direct labor MMHs of applying 

expert systems to assist in diagnosis of aircraft discrepancies. The secondary objective 

of this research was to identify direct labor MMH costs associated with Hornet, Hawkeye, 

and Viking aircraft at the organizational and intermediate maintenance levels. 

The primary research question addressed was: 

• What is the empirical model for deriving the potential direct labor MMH cost 
savings by using expert systems to assist fault isolation of Hornet, Hawkeye and 
Viking systems/components? 

The secondary research questions addressed were: 

• What are some of the potential benefits of using expert systems in the Naval 
aviation maintenance field? 
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• What are the top five component MMH consumers at the organizational 
maintenance level for the Hornet, Hawkeye and Viking aircraft during FY 
1994? 

• What are the top five component MMH consumers at the intermediate 
maintenance level for the Hornet, Hawkeye and Viking aircraft during FY 
1994? 

• What are the direct labor MMH costs, using conventional fault isolation 
methods to identify failed components, for the three aircraft during FY 1994? 

A.       RESEARCH QUESTIONS AND ANSWERS 

This section provides the answers to the primary and secondary research questions. 

Can a model be developed to derive the potential direct labor MMH 
cost savings by using expert systems to assist fault isolation of Hornet, 
Hawkeye and Viking systems/components? 

It was found that it was possible to develop such a model. The Shirkey-Schanz 

Expert System Maintenance Man-Hour Cost Savings Model was developed by the authors 

to determine the potential direct labor MMH cost savings from using expert systems to 

fault isolate aircraft systems/components. The empirical model groups components into 

categories based upon their average fault isolation times. The component categories were 

designated average, difficult, complex, or unrepairable. Each category was assigned an 

average fault isolation time to repair that category of component based upon a domain 

expert's recommendation. In the example used for this research, if a component required 

over eight hours of repair it was considered beyond the economical repair capability of 

the maintenance organization. Such components were classified in the unrepairable 

category. 

The difficult and complex component categories were chosen as targets for 

potential expert system development. These two categories were primarily chosen 

because: 
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1. These components require significantly greater fault isolation times; 

2. A key reason for this is that there is a lack of factual/documented 
knowledge available to the technician; 

3. The heuristic knowledge of a technical representative is usually required 
to correctly fault isolate these components within a reasonable period of 
time. 

The empirical model developed may be used to calculate MMH cost savings at the 

organizational and intermediate maintenance levels for various type/model/series of 

aircraft. 

What are some of the potential benefits of using expert systems in the 
Naval aviation maintenance field? 

Expert systems offer several potential benefits to the Naval aviation maintenance 

process. First, is a reduction in MMH because of more efficient and effective fault 

isolation. Technicians and technical representatives in each of the three aircraft 

investigated expressed a need for better fault isolation methodologies and techniques for 

various discrepancy areas. Also, aviation technicians today are never without a sizeable 

backlog of awaiting maintenance discrepancies. The fact that they are able to reduce their 

fault isolation time will allow them to use this time to work on this backlog. 

A second benefit is improved operational readiness. The fact that an item can be 

fault isolated more quickly means that the system will be returned to an operationally 

ready status sooner. Other studies have documented such opportunities, for example, 

(Powell, 1994). 

Many discrepancies require the assistance of a domain expert. Unfortunately, 

experts can only be at one place at a time; they also have a limited number of hours per 

day they are available. This brings up a third benefit. Expert systems and the knowledge 

they contain can be inexpensively reproduced and distributed widely. They can be 

employed simultaneously at 10 squadrons scattered around the world. An expert system 

is also available 24 hours a day to provide assistance. Something even the most dedicated 

expert cannot accomplish 365 days a year. 
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Expert systems can also improve aircraft maintenance by reducing A-799 rates, 

i.e.,components returned to an RFI status because no defect could be found. 

What are the top five component MMH consumers at the organiza- 
tional maintenance level for the Hornet, Hawkeye and Viking aircraft 
during FY 1994? 

The top five MMH consumers at the O-level for the three aircraft during FY 1994 

were: 

F/A-18C Hornet 

Component MMH 

SUU63/A aircraft pylon 3,082.6 

LAU7/A guided missile launcher 2,445.9 

BRU32/A aircraft ejector bomb rack 1,761.6 

Aileron installation 587.0 

Main landing gear mechanical installation 251.4 

E-2C Hawkeye 

Component 

Variable pitch propeller 

Power plant system install/engine assembly 

Utility light 

Rudder 

Propeller control assembly 

MMH 

4,808.3 

2,716.0 

1,639.1 

1,298.7 

510.7 

S-3B Viking 

Component 

ASW33 flight data computer 

Switch logic unit 

Integrated radio controller 

BRU14 bomb rack assembly 

Engine wing pylon installation/assembly 

MMH 

2,697.0 

2,489.4 

1,879.4 

877.2 

425.8 
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What are the top five component MMH consumers at the intermediate 
maintenance level for the Hornet, Hawkeye and Viking aircraft during 
FY 1994? 

The top five MMH consumers at the I-level for the three aircraft during FY 1994 

were: 

F/A-18C Hornet 

Component MMH 

APG65 radar transmitter 11,493.5 

APG65 receiver exciter 10,579.8 

APG65 antenna 7,898.7 

ASW44 pitch-roll-yaw computer 5,570.3 

ARC radio receiver/transmitter 4,819.9 

E-2C Hawkeye 

Component 

APA 172 azimuth range indicator 

AIC14 ICS control 

APA 172 azimuth range indicator 

ASQ digital data converter 

ASQ digital data computer 

MMH 

7,160.5 

2,491.9 

202.2 

17.0 

3.6 

S-3B Viking 

Component 

ASW33 flight data computer 

Switch logic unit 

ASA84 navigation data converter 

ARC 156 radio receiver/transmitter 

Wheel/tire assembly 

MMH 

8,498.2 

6,565.6 

6,292.7 

5,487.8 

191.2 
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What are the direct labor MMH costs, using conventional fault isola- 
tion methods to identify failed components, for the three aircraft 
during FY 1994? 

For Hornet maintenance at the organizational and intermediate levels, the total cost 

was $1,124,499.33 for the top five component MMH consumers. The primary cost 

drivers occurred at the I-level, which included the weapons control system components 

(APG65 radar transmitter, APG65 receiver exciter, APG65 antenna). These three 

components accounted for approximately 62 percent of the total MMH cost. When the 

authors factored in the ASW44 pitch-roll-yaw computer and radio receiver/transmitter, the 

I-level accounted for 83 percent of the total direct MMH labor cost. 

The Hawkeye's total direct labor MMH cost was $483,465.12 for the top five 

consumers at the O- and I-levels. Organizational level MMH costs accounted for 

approximately 53 percent of the total cost. The variable pitch propeller was the major O- 

level cost driver.  It accounted for 23 percent of the total direct labor MMH cost. 

Forty-seven percent of the Hawkeye 's total direct labor MMH cost was accumu- 

lated at the I-level. The azimuth range indicator (WUC 726J2) was the number one cost 

driver.  It accounted for 34 percent of the total cost. 

The total direct labor MMH cost was $821,025.72 for the Viking's top five MMH 

consumers at the O- and I-levels. The organizational maintenance level accounted for 24 

percent of the total cost. The ASW33 flight data computer was the number one O-level 

cost driver at $462,543.43. 

The intermediate maintenance level accounted for 74 percent of the total cost. The 

ASW33 flight data computer again accounted for $197,073.26 or 24 percent of the total 

cost. The switch logic unit was the second leading cost driver at a cost of $152,256.26 

for FY 1994. This was followed by the navigation data converter at a cost of 

$145,927.71. 
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B. CONCLUSIONS 

From the research completed, the authors have determined it is possible to develop 

an empirical model to derive potential direct labor MMH cost savings from expert 

systems. The model is flexible and easily modified to determine MMH cost savings for 

various type/model/series of aircraft and repair facilities. 

The potential benefits of expert systems include reduced MMHs through more 

efficient and effective fault isolation. Reduced fault isolation also serves to reduce the 

backlog of awaiting maintenance discrepancies. Another benefit is improved operational 

readiness by returning systems to ready status sooner through reduced fault isolation time. 

The primary MMH consumers for all three aircraft investigated were based on the 

top five component direct labor MMH consumers. For the Hornet the primary cost driver 

consisted of the APG65 weapons control system, accounting for 62 percent of the total 

MMH cost at the O- and I- levels. The Hawkeye's primary MMH consumer at the O- 

level was the variable pitch propeller, accounting for 53 percent of the total cost. The 

azimuth range indicator was the primary cost driver for the Hawkeye at the I-level, 

accounting for 34 percent of the direct labor consumed. The ASW33 was the Viking's 

primary cost driver at the O- and I- levels, accounting for over 80 percent of the total O- 

and I- level maintenance costs for the top five components. 

C. LESSONS LEARNED 

This research uncovered several areas that may prove advantageous for further 

investigation. The authors originally started in the general direction of identifying the cost 

drivers for several aircraft. The potential application areas for using expert systems was 

to be made. Determining which area would provide the most meaningful data and 

specific information, while weeding out areas beyond the scope and time constraints of 

the thesis, proved to be a major learning experience. 

The following areas may provide assistance for those pursuing further investigation 

into the application of expert systems in the field of Naval aviation maintenance. 

73 



1.        NALDA 

Currently, on line access to the NALDA data base is not available at the Naval 

Postgraduate School (NPS). Such access would be very valuable in reducing the turn 

around time required to obtain aircraft maintenance data. The scope of this thesis had to 

be significantly reduced because the turn around time associated with data gathering was 

extensive. The data gathering process involved determining a reliable and valid source 

of data, the methods required to extract the data from an extremely large database, and 

then processing the data into manageable and meaningful information. Not having direct 

access to the NALDA database, the authors were fortunate to find an exceptionally astute 

and cooperative contact at AIMD NAS Lemoore. Our point of contact, AZl(AW) 

Gilman, possessed the expertise to extract NALDA data, using the NAS Lemoore access 

node. We provided the background and purpose of the study and the type of data we 

were interested in. 

Retrieving NALDA data consisted of submitting a request using a password and 

the required NALDA system data access codes. Turn around time took several work days 

and resulted in large amounts of raw data. AZl(AW) Gilman would then process the data 

into meaningful information necessary to facilitate the thesis effort. 

Normal turn around was one or two weeks depending on the amount of data 

extracted. The information obtained would then be used to determine the fault isolation 

percentages and pertinency rates from field technicians. The typical time to obtain 

relevant information from technicians added an additional two to three weeks. 

Thankfully, AZl(AW) Gilman unselfishly provided his support. 

All in all, gathering data from the NALDA database using the process described 

was time consuming and not a very efficient process. A significant reduction in 

communications and the time required to get data from the NALDA database would result 

if NPS had an on-site access node. 
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2. Logistics Management Decision Support System (LMDSS) 

LCDR Mike Kelly of NAMO provided a demonstration of LMDSS capabilities at 

NPS in March 1995. Using LMDSS he accessed the NALDA database from NPS 

terminals and extracted our required data in only 20 minutes. It had taken us months and 

a trip to NAS Lemoore to obtain similar data. This thesis project is not the only one that 

has required access to NALDA data. Several other students have completed theses which 

were dependent on NALDA data. They also faced similar delays in obtaining information 

because of the difficulty in accessing NALDA. 

LMDSS access from NPS would: (1) alleviate data retrieval time delays, (2) 

reduce thesis travel time, (3) reduce thesis travel costs, and (4) reduce the amount of 

assistance solicited from fleet personnel. 

LMDSS has only been in existence for two years and is accessible via the Internet. 

The advantages of LMDSS is that it is instinctive, has push button features and is user 

friendly. It allows the user to access data in a manner similar to a "Windows" graphical 

user interface application. Data can be gathered based on aircraft type/model/series. The 

results are tabulated into an easily useable form. 

LMDSS access requires authorization by NAMO and hands on training. NPS 

would have to request such authorization via message or naval letter. For long term 

continuity, it is recommended that a computer specialist from NPS attend the three- week 

NAMO LMDSS computer course. If available, a significant number of aerospace 

maintenance and supply officers would use this resource in their research or course work. 

3. Electro-Optical Test Set (EOTS) 

NAS Lemoore is considered to have the most successful EOTS repair facility in 

the Navy. Over the years, the technical representatives have assimilated a tremendous 

amount of heuristic knowledge that is vital in efficiently repairing the Hornet's FLIR 

system using the test bench. Based on our trip to NAS Lemoore, we believe the EOTS 

bench at the AIMD would be a prime candidate for the development of an expert system. 

This knowledge has never been incorporated into the operating procedures and 

documentation for the system. If the knowledge was encapsulated into an expert system, 
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the impact would prove exceptionally beneficial to Navy maintenance technicians in the 

field. 

Another justification for an expert system is that with decreased funding, it is 

inevitable that there will be some decrease in the number of NAESU technical 

representatives in the years ahead. When such experts leave the Navy, the expertise and 

knowledge they have accumulated over decades will leave with them. An expert system 

would capture this valuable knowledge. 

4. VAST/CASS 

With the VAST bench being replaced in late 1995, there is little reason to develop 

an expert system if development time and potential return on investment are taken under 

consideration. With CASS introduction into the fleet at the end of calendar year 1995, 

expert systems technology could find a more applicable avenue for development. CASS 

will consist of much newer technology requiring development of a new set of heuristic 

data and test programs. This integrated approach between expert systems and CASS is 

also the preferred method of incorporation according to a NAVAIRSYSCOM representa- 

tive. While it is not evident that an expert system in this area would payoff, it seems that 

this would be a primary area for further study and investigation. 

5. A-799 

Another area for potential further review would be in the area of A-799s. As 

mentioned in Chapter II, the term A-799 refers to a specific action taken code. In this 

case, an item sent to the next higher level of maintenance. Such items are returned to an 

RFI status because the repair facility could not find an associated component defect. In 

other words, they are perfectly functional parts. 

Because of time and funding constraints we were unable to address this issue in 

our research. However, we were able to make an initial investigation into A-799s based 

on an entire system's two-digit WUC. A two digit code is a much more encompassing 

category, as compared to a five digit WUC for singular components. An entire system 

is composed of many components which require repair at different types of maintenance 

facilities.    For example, a two digit WUC would fall under the category bombing 
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navigation systems or interphone systems.     A five digit WUC includes specific 

components of the system, such as a navigational data converter or a switch logic unit. 

Potential A-799 areas to investigate include the full cost and the net price of a 

system component. By investigating these two areas, the current procurement cost, 

current repair cost, depot washout factor and carcass loss factor of a component can be 

determined. Also, a component surcharge is applied to both the full cost and net price 

of a component. Therefore, the authors recommend investigating the component 

surcharge issue since the following costs may be revealed: (1) supply operations, (2) 

transportation, (3) inventory losses, (4) obsolescence, (5) inflation, and (6) inventory 

management. 

MMHs expended by military, civilian and contractor personnel and other cost 

considerations, such as direct labor MMH costs, indirect costs (e.g., travel costs) and 

overhead costs, lend themselves to investigation. Lastly, the impact of A-799s on 

operational readiness can be investigated. 

Appendix B is a suggested flow chart representation of the A-799 issues discussed. 

An in-depth examination of A-799 issues, on a single aircraft system, could easily 

encompass an entire single thesis topic.  We believe such a study is warranted. 

6.        NETS/CETS 

NETS/CETS man-hours were explored as a potential area in which to reduce costs 

by applying expert systems. Unfortunately, the differences between military man-hour 

accounting methods compared with civilian man-hour accounting methods could not be 

resolved. Military man-hours are accounted for on the VIDS/MAFs, and were accessible 

via the NALDA database. The civilian man-hours were broken down into more general 

tasking areas. 

Due to insufficient time, we were not able to further explore the NETS/CETS 

man-hour issues to obtain potential cost saving estimates. This topic could be another 

potential thesis for students who endeavor to "crack the code" of compatibility between 

military and civilian man-hour accounting systems. 
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D.       RECOMMENDATIONS 

Based upon research conducted in this thesis, conclusions and lessons learned in 

the previous section, the following recommendations are offered: 

• 

• 

• 

Recommend future research be conducted to determine the applicability of 
expert systems to help fault isolate Hornet I-level components. Expert systems 
appear to be applicable to help maintenance technicians fault isolate the 
Hornet's APG65 radar transmitter, APG65 receiver exciter, and APG65 
antenna at the I-level. Based on conversations with technicians, the three 
APG65 components are categorized as difficult or complex components. This 
marks the three components as prime candidates to apply expert systems to 
reduce the fault isolation times, reduce MMHs and save money. 

Continue pursuit of LMDSS access from NPS. This could greatly enhance the 
research capabilities of faculty and students. Current requirements for data 
retrieval, thesis travel, travel costs, and assistance from fleet personnel could 
be reduced if LMDSS access is available from NPS. 

A prime candidate for the development of an expert system is the EOTS 
facility at AIMD NAS Lemoore. The technical representatives have assimilated 
a tremendous amount of heuristic knowledge and data that proves vital for the 
successful repair of fleet assets. The heuristic data enables NAS Lemoore's 
EOTS facility to maintain itself as the most successful repair facility of its type 
in the fleet. Development of an expert system could preserve the vital repair 
data and prevent its loss in the event that some technical representatives support 
is further reduced. 

The authors recommend further investigation into the implementation of expert 
systems into the upcoming CASS since the current VAST system is due for 
replacement late in calendar year 1995. Expert system heuristics must be kept 
current and updated for eventual incorporation into test programs as part of a 
continual improvement process. Continued research into the most promising 
areas of costs/benefits, compatibility and effectiveness could provide a vital 
core toward the merging of CASS and its test programs with expert systems. 

The A-799 issue and the application of expert systems in Naval aviation 
maintenance field is another area that requires investigation. The adverse impact 
on operational readiness, associated costs, unnecessary removal/replacement of 
perfectly functional parts and wasted MMHs are only a few good reasons that 
this area requires investigation. 
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APPENDIX A. F/A-18C HOBNET SELECTED WEAPONS SYSTEMS 
DATA (OCT 1993-SEP 1994) 

TOP 10 SYSTEM FAILURES 

JLURES BY 
wuc 

12,469 13 
9,986 74 
8,713 14 
7,329 75 
4,826 27 
2,690 41 
2,681 76 
2,617 42 
2,369 46 
2,268 44 

20,672 * 

76,620 
4,430 74 
1,606 14 
1,447 76 
1,146 73 
1,088 13 

984 27 
891 58 
784 57 
638 41 
530 29 

4,490 * 

18,034 

ML 

LANDING GEAR 
WEAPONS CONTROL SYSTEMS 
FLIGHT CONTROLS 
WEAPON DELIVERY 
TURBOFAN ENGINES 
AIR CON/PRSRZ/ICE CONTROL 
COUNTERMEASURES SYSTEMS 
ELECTRICAL POWER SUPPLY 
FUEL SYSTEMS 
LIGHTING SYSTEM 

WEAPONS CONTROL SYSTEMS 
FLIGHT CONTROLS 
COUNTERMEASURES SYSTEMS 
BOMBING NAVIGATION SYSTEMS 
LANDING GEAR 
TURBOFAN ENGINES 
IN-FLIGHT TEST EQUIP SYS 
INTEGR GUID/FLT CONT SYS 
AIR CON/PRSRZ/ICE CONTROL 
POWER PLANT INSTALLATION 

94,654 TOTAL 
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F/A-18C HORNET SELECTED WEAPONS SYSTEMS DATA 
(OCT 1993-SEP 1994) 

TOP 10 EMT BY SYSTEM 

ML 
FLIGHT CONTROLS 
LANDING GEAR 
WEAPONS CONTROL SYSTEMS 
TURBOFAN ENGINES 
WEAPON DELIVERY 
FUEL SYSTEMS 
AIR COND/PRSRZ/SURFACE ICE 
CONTROL 
ELECTRICAL POWER SUPPLY 
POWER PLANT INSTALLATION 
COUNTERMEASURES SYSTEMS 

WEAPONS CONTROL SYSTEMS 
FLIGHT CONTROLS 
COUNTERMEASURES SYSTEMS 
BOMBING NAVIGATION 
SYSTEMS 
ELECTRICAL POWER SUPPLY 
INTEGRATED GUIDANCE/FLT 
CONT SYSTEMS 
LANDING GEAR 
IN-FLIGHT TEST EQUIPMENT 
SYSTEMS 
TURBOFAN ENGINES 
INTERPHONE SYSTEMS 

HOURS BYWUC 
23,627.6 14 
17,841.5 13 
15,594,2 74 
9.6^9 7 27 
7,e 9.1 75 
7,5 8,2 46 
6,508.7 41 

5,734.1 42 
4,893.4 29 
3,979.4 76 

135,441.6 
32,385.7 * 

36,790.4 74 
12,067.9 14 
11,750.4 76 
10,934.1 73 

5,608.4 42 
5,431.8 57 

5,425.1 13 
4,798.7 58 

3,742.3 27 
2,935.9 64 

22,413.0 * 

121,898.0 

257,339.6 TOTAL 
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TOP 5 COMPONENT FAILURES 

FAILURES BY WUC   ML 
1,647 75E51 SUU63/A AIRCRAFT PYLON 
1,624 751B6 LAU7/A GUIDED MISSILE 

LAUNCHER 
1,526 13C11 MAIN LANDING GEAR MECH 

INSTALLATION 
1,442 14211 AILERON INSTALLATION 
1,283 754CD BRU32/A ACFT BOMB EJECTOR 

RACK 
69,098 * 

76,620 1 
631 742G6 AS3254/APG65 ANTENNA 
560 742G1 T1377/APG65 RADAR 

TRANSMITTER 
513 62X21 RT1250/ARC RADIO RECEIVER 

XMTR 
500 742G2 R2089/APG65 RADAR RECEIVER 

EXCITER 
464 57D91 CP1330/ASW44 ROLL-PITCH- 

YAW CMPTR 
15,366 * 

18,034 2 

94,654 TOTAL 
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F/A-18C HORNET SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 5 ML 1 COMPONENT FAILURES BY MALFUNCTION 

FAILURES BY MAL 

818 170 
215 070 

130 425 
67 020 

wuc 

50 160 

142 
1,422 

* 

1,008 
116 

170 
070 

84 
47 
36 

425 
190 
020 

108 
1,399 
899 
38 

* 

170 
932 

34 160 

31 020 

30 127 

129 
1,161 

* 

54 
15 

170 
070 

9 
9 
7 

190 
425 
020 

25 
119 

* 

751B6 

75E51 

754CD 

14211 

CORRODED 
PUNCTD/RUPTURED/TORN/ 
BRKN/CUT/BURST 
NICKED/CHIPPED 
STPJPPED/WORN/CHAFED/ 
FRAYED 
BROKEN WIRE/DEFEC/ 
CONTACT/CONNECTION 

LAU7/A GUIDED MISSILE 
LAUNCHER 
CORRODED 
PUNCTD/RUPTURED/ 
TORN/BRKN/CUT/BURST 
NICKED/CHIPPED 
CRACKED/CRAZED 
STRIPPED/WORN/ 
CHAFED/FRAYED 

SUU63/A AIRCRAFT PYLON 
CORRODED 
DOES NOT ENGAGE/LOCK/ 
UNLOCK PROPERLY 
BROKEN WIRE/DEFEC 
CONTACT/CONNECTION 
STRIPPED/WORN/ 
CHAFED/FRAYED 
ADJUSTMENT/ALIGNMENT 
IMPROPER 

BRU32/A ACFT BOMB 
EJECTOR RACK 
CORRODED 
PUNCTD/RUPTURED/ 
TORN/BRKN/CUT/BURST 
CRACKED/CRAZED 
NICKED/CHIPPED 
STRIPPED/WORN/ 
CHAFED/FRAYED 

AILERON INSTALLATION 
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63 170 
9 425 
6 020 

6 070 

2 128 

14 * 

100 

CORRODED 
NICKED/CHIPPED 
STRIPPED/WORN/ 
CHAFED/FRAYED 
PUNCTD/RUPTURED/ 
TORN/BRKN/CUT/BURST 
RIGGING/INDEXING 
INCORRECT 

13C11 MAIN LANDING GEAR MECH 
INSTALLATION 

4,201 TOTAL 

EMT FOR TOP 5 ML 1 COMPONENT FAILURES 

HOURS BYWUC 
1,663.1 75E51 
1,405.4 751B6 

898.6 754CD 
317.7 14211 
159.3 13C11 

SUU63/A AIRCRAFT PYLON 
LAU7/A GUIDED MISSILE LAUNCHER 
BRU32/A ACFT BOMB EJECTOR RACK 
AILERON INSTALLATION 
MAIN LANDING GEAR MECH 
INSTALLATION 

4,444.1 TOTAL 
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F/A-18C HORNET SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

MMH FOR VERIFIED ML 1 FAILURES 

HOURS 
14,324.9 
47,839.0 
35,641.9 

BYWUC 
75 
14 
13 

WEAPON DELIVERY 
FLIGHT CONTROLS 
LANDING GEAR 

97,805.8 TOTAL 

MMH FOR TOP 5 ML 1 COMPONENT FAILURES 

HOURS 
3,082.6 

2,445.9 

1,761.6 

587.0 

251.4 

BYWUC 
75E51 SUU63/A AIRCRAFT 

PYLON 
751B6 LAU7/A GUIDED MISSILE 

LAUNCHER 
754CD BRU32/A ACFT BOMB 

EJECTOR RACK 
14211 AILERON 

INSTALLATION 
13C11 MAIN LANDING GEAR 

MECH INSTALLATION 

8,128.5 TOTAL 
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F/A-18C HORNET SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 5 ML 2 COMPONENT FAILURES BY MALFUNCTION 

FAILURES BY MAL 
WUC 

258 290 
229 127 
58 160 
17 070 
8 804 
25 * 

595 742G6 
242 290 
229 160 
18 070 
15 169 
10 374 
36 * 

550 742G1 
309 127 
175 255 
8 070 
3 160 
3 169 
15 * 

513 62X21 
163 160 
158 127 
150 290 
9 070 
5 169 
13 * 

498 742G2 
275 160 
136 290 
10 127 
7 169 
6 447 
27 * 

461 57D91 

FAILS DIAGNOSTIC/AUTOMATIC TESTS 
ADJUSTMENT/ALIGNMENT IMPROPER 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
PUNCTD/RUPTUREDnrORN/BRKN/CUT/BURST 
NO DEFECT-REM/INST FOR SCHED MAINT 

AS3254/APG65 ANTENNA 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
VOLTAGE INCORRECT 
INTERNAL FAILURE 

T1377/APG65 RADAR TRANSMITTER 
ADJUSTMENT/ALIGNMENT IMPROPER 
NO OUTPUT 

PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
VOLTAGE INCORRECT 

RT1250/ARC RADIO RECEIVER XMTR 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
ADJUSTMENT/ALIGNMENT IMPROPER 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 

PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
VOLTAGE INCORRECT 

R2089/APG65 RADAR RECEIVER EXCITER 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
ADJUSTMENT/ALIGNMENT IMPROPER 
VOLTAGE INCORRECT 
WRONG LOGIC-PROGRAM/COMPUTER 

CP1330/ASW44 ROLL-PITCH-YAW CMPTR 

2,617 TOTAL 
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EMT FOR TOP 5 ML 2 COMPONENT FAILURES 

HOURS BY WUC 
5.474.8 742G1      T1377/APG65 RADAR TRANSMITTER 
5.300.9 742G2      R2089/APG65 RADAR RECEIVER EXCITER 
3,833.1 742G6      AS3254/APG65 ANTENNA 
3,051.3 57D91      CP1330/ASW44 ROLL-PITCH-YAW CMPTR 
2,483.9 62X21      RT1250/ARC RADIO RECEIVER XMTR 

20,144.0 TOTAL 
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F/A-18C HOBNET SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

HOURS 
69,209.2 
4,924.5 
9,669.9 

MMH FOR VERD7D2D ML 2 FAILURES 

BYWUC 
74 WEAPONS CONTROL SYSTEMS 
62 VHF COMM SYSTEMS 
57 INTEGRATED GUIDANCE/FLT CONT SYSTEMS 

83,803.6 TOTAL 

MMH FOR TOP 5 ML 2 COMPONENT FAILURES 

HOURS BY 
11,493.5 742G1 
10,579.8 742G2 
7,898.7 742G6 
5,570.3 57D91 
4,819.9 62X21 

40,362.2 

T1377/APG65 RADAR TRANSMITTER 
R2089/APG65 RADAR RECEIVER EXCITER 
AS3254/APG65 ANTENNA 
CP1330/ASW44 ROLL-PITCH-YAW CMPTR 
RT1250/ARC RADIO RECEIVER XMTR 

TOTAL 

TOP 10 NMCS COMPONENTS 

HOURS 
103,943.2 
77,267.9 
74,650.0 
66,991.5 
56,427.8 
46,520.7 
46,401.9 
36,409.5 
35,065.7 
34,937.1 

1,517,638.7 

2,096,254.0 

BY BEST- 
27400 
14513 
742G6 
14211 
14612 
742G1 
14312 
57D91 
14412 
58X17 

TOTAL 

WUC 
F404-GE-ENGINE 
LEADING EDGE FLAP DRIVE INSTL 
AS3254/APG65 ANTENNA 
AILERON INSTALLATION 
TRAILING EDGE FLAP CONTROL 
T1377/APG65 RADAR TRANSMITTER 
STABILIZER CONTROL INSTALLATION 
CP1330/ASW44 ROLL-PITCH-YAW CMPTR 
RUDDER CONTROL 
ID2389/A INTEG FUEL-ENGINE IND 
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TOP 10 NMCM COMPONENTS 

HOURS BY BEST- 
107,481.8 27400 
97,296.5 57D91 
96,326.3 14513 
80,775.1 14612 
80,164.9 29123 
70,646.6 42118 
69,246.6 14312 
61,663.0 46115 
57,240.4 14412 
51,353.8 13C11 

2,573,418.4 * 

-wuc 
F404-GE-ENGINE 
CP1330/ASW44 ROLL-PITCH-YAW CMPTR 
LEADING EDGE FLAP DRIVE INSTL 
TRAILING EDGE FLAP CONTROL 
STARTER INSTALLATION 
GENERATOR CONVERTOR UNIT 
STABILIZER CONTROL INSTALLATION 
FUEL FEED SYSTEM 
RUDDER CONTROL 
MAIN LANDING GEAR MECH INSTALLATION 

3,3^5,613.4 TOTAL 
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F/A-18C HORNET SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 5 A799 MMH/SYSTEMS 

HOURS BY WUC 
ML 

6.490.7 74        WEAPONS CONTROL SYSTEMS 
2.092.5 57        INTEGRATED GUIDANCE/FLT CONT SYSTEMS 
2.040.6 14        FLIGHT CONTROLS 
1.749.3 27        TURBOFAN ENGINES 
1.710.5 13        LANDING GEAR 

11,166.4 * 
25,250.0 1 
8,303.0 74        WEAPONS CONTROL SYSTEMS 
3.239.6 73        BOMBING NAVIGATION SYSTEMS 
2.063.8 57        INTEGRATED GUIDANCE/FLT CONT SYSTEMS 
1,489.6 58        IN-FLIGHT TEST EQUIPMENT SYSTEMS 
1,014.6 75        WEAPON DELIVERY 
8.002.4 * 

24,113.0 2 

49,363.0 TOTAL 
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E-2C HAWKEYE SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 10 SYSTEM FAILURES 

FAILURES BY WUC 
ML 

6,888 72 RADAR NAVIGATION SYSTEMS 
4,427 44 LIGHTING SYSTEMS 
3,756 29 POWER PLANT INSTALLATION 
3,368 13 ALIGHTING/LAUNCHING SYSTEM 
2,981 14 DIRECTIONAL FLT CONTROLS/LIFT SYSTEM 
2,703 41 ENVIRONMENTAL CONTROLS/PNEUMATIC SYS 
2,681 42 ELEC PWR SPLY/DISTRIBUTION/LTG SYS 
2,106 32 HYDRAULIC PROPELLERS 
1,788 12 FURNISHINGS/COMPARTMENTS 
1,724 22 TURBOSHAFT ENGINES 

17,023 * 
49,445 1 
4,167 72 RADAR NAVIGATION SYSTEMS 

846 73 BOMBING NAVIGATION SYSTEMS 
789 56 FLIGHT REFERENCE SYSTEMS 
463 61 HF COMMUNICATIONS SYSTEMS 
446 13 ALIGHTING/LAUNCHING SYSTEMS 
443 64 INTERPHONE SYSTEMS 
437 29 POWER PLANT INSTALLATION 
427 51 INSTRUMENTATION SYSTEMS 
414 41 ENVIRONMENTAL CONTROLS/PNEUMATIC SYS 
392 22 TURBOSHAFT ENGINES 

3,091 * 
11,915 2 

61,360 TOTAL 
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E-2C HAWKEYE SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 10 EMT BY SYSTEM 

RADAR NAVIGATION SYSTEMS 
DIRECTIONAL FLT CONTROLS/LIFT SYSTEM 
POWER PLANT INSTALLATION 
ELEC PWR SPLY/DISTRIBUTION/LTG SYSTEM 
HYDRAULIC PROPELLERS 
ENVIRONMENTAL CONTROLS/PNEUMATIC SYS 
ALIGHTING/LAUNCHING SYSTEM 
TURBOSHAFT ENGINES 
LIGHTING SYSTEMS 
FLIGHT REFERENCE SYSTEMS 

RADAR NAVIGATION SYSTEMS 
BOMBING NAVIGATION SYSTEMS 
HF COMMUNICATIONS SYSTEMS 
COUNTERMEASURES SYSTEMS 
FLIGHT REFERENCE SYSTEMS 
POWER PLANT INSTALLATION 
IFF SYSTEMS 
INSTRUMENTATION SYSTEMS 
INTERPHONE SYSTEMS 
INTEGRATED GUIDANCE/FLT CONT SYSTEMS) 

HOURS BY WUC 
ML 

18,750.3 72 
10,110.1 14 
8,431.2 29 
8,093.3 42 
7,898.4 32 
7,704.0 41 
6,876.3 13 
5,251.3 22 
4,837.0 44 
3,615.2 56 

33,491.0 * 

115,058.1 1 
35,707.0 72 
11,637.5 73 
4,117.8 61 
3,785.2 76 
3,091.4 56 
3,048.5 29 
2,576.2 65 
2,476.1 51 
2,442.8 64 
2,432.0 57 
17,311.0 * 

88,625.5 2 

203,683.6 TOT.A 
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TOP 5 COMPONENT FAILURES 

FAILURES 

1,331 
901 
645 
621 
599 

45,348 
49,445 

524 
294 
291 
273 
263 

10,270 
11,915 

61,360 

BYWUC 
ML 

4422K UTILITY LIGHT 
32512 VARIABLE PITCH PROPELLER 
14121 RUDDER 
29E10 POWER PLANT SYSTEM INSTL/ENGINE ASSY 
32513 PROPELLER CONTROL ASSEMBLY 

726J4 IP 1040/APA172 AZ RANGE IND (CONTD) 
726J2 IP 1040/APA172 AZ RANGE INDICATOR 
728E1 CP1084/ASQ DGTL DATA CMPTR 46A1 
728E2 CV2868/ASQ DIGITAL DATA CONV 46A2 
64184 C2645/AIC14 ICS CONTROL 

TOTAL 
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E-2C HAWKEYE SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 5 ML 1 COMPONENT FAILURES BY MALFUNCTION 

FAILURES BY MAL 
WUC 

1,060 080 
100 160 
76 070 
31 170 
13 374 
51 * 

1,331 4422K 
241 170 
70 127 
70 306 
68 020 
36 381 
136 * 

621 29E10 
67 170 
62 020 
44 117 
44 127 
40 458 
140 * 

397 32512 
95 170 
40 020 
32 190 
32 425 
19 070 
58 * 

276 14121 
14 170 
8 381 
5 070 
4 037 
3 127 
15 * 

49 32513 

BURNED OUT (LIGHT BULBS/FUSES) 
BROKEN WIRE/DEFECTIVE/CONNECTION 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
CORRODED 
INTERNAL FAILURE 

UTILITY LIGHT 
CORRODED 
ADJUSTMENT/ALIGNMENT IMPROPER 
CONTAMINATION (NON-METALLIC) 
STRIPPED/WORN/CHAFED/FRAYED 
LEAKING-INTERNAL/EXTERNAL 

POWER PLANT SYS INSTL/ENGINE ASSY 
CORRODED 
STRIPPED/WORN/CHAFED/FRAYED 
DETERIORATED/ERODED 
ADJUSTMENT/ALIGNMENT IMPROPER 
OUT OF BALANCE 

VARIABLE PITCH PROPELLER 
CORRODED 
STRIPPED/WORN/CHAFED/FRAYED 
CRACKED/CRAZED 
NICKED/CHIPPED 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 

RUDDER 
CORRODED 
LEAKING-INTERNAL/EXTERNAL 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
FLUCTUATES/OSCILLATES 
ADJUSTMENT/ALIGNMENT IMPROPER 

PROPELLER CONTROL ASSEMBLY 

2,674 TOTAL 
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EMT FOR TOP 5 ML 1 COMPONENT FAILURES 

HOURS BY WUC 
1,939.4 32512      VARIABLE PITCH PROPELLER 
1,186.4 29E10      POWER PLANT SYSTEM INSTL/ENGINE ASSY 
L083.0 4422K      UTILITY LIGHT 

706.4 14121      RUDDER 
206.6 32513      PROPELLER CONTROL ASSEMBLY 

5,121.8 TOTAL 
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E-2C HAWKEYE SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

HOURS 
18,502.7 
16,748.9 
7,644.8 

20,030.8 

MMH FOR VERIFIED ML 1 FAILURES 

BYWUC 
32 HYDRAULIC PROPELLERS 
29 POWER PLANT INSTALLATION 
44 LIGHTING SYSTEMS 
14 DIRECTIONAL FLT CONTROLS/LIFT SYSTEM 

62,927.2 TOTAL 

MMH FOR TOP 5 ML 1 COMPONENT FAILURES 

HOURS BYWUC 
4,808.3 32512 VARIABLE PITCH PROPELLER 
2,716.0 29E10 POWER PLANT SYSTEM INSTL/ENGINE ASSY 
1,639.1 4422K UTILITY LIGHT 
1,298.7 14121 RUDDER 

510.7 32513 PROPELLER CONTROL ASSEMBLY 

10,972.8 TOTAL 

TOP 5 ML 2 COMPONENT FAILURES BY MALFUNCTION 

FAILURES BY MAL 
WUC 

102 127 
85 160 
75 290 
15 070 
4 374 

13 * 

294 726J2 
77 255 
63 070 
57 160 
31 127 
10 374 
25 * 

263 64184 
15 070 
12 160 
7 127 
2 135 
2 290 
6 * 

44 726J4 

ADJUSTMENT/ALIGNMENT IMPROPER 
BROKEN WIRE/DEFEC/CONTACT/CONNECTION 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
INTERNAL FAILURE 

IP1040/APA172 AZ RANGE INDICATOR 
NO OUTPUT 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
ADJUSTMENT/ALIGNMENT IMPROPER 
INTERNAL FAILURE 

C2645/AIC14 ICS CONTROL 
PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
ADJUSTMENT/ALIGNMENT IMPROPER 
STRUCK/BINDING/JAMMED 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 

IP1040/APA172 AZ RANGE IND (CONTD) 
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7 070 
1 160 
1 374 
9 
1 127 
1 

PUNCTD/RUPTURED/TORN/BRKN/CUT/BURST 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
INTERNAL FAILURE 

728E1      CP1084/ASQ DGTL DATA CMPTR 46A1 
ADJUSTMENT/ALIGNMENT IMPROPER 

728E2      CV2868/ASQ DIGITAL DATA CONV 46A2 

611 TOTAL 
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E-2C HAWKEYE SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

EMT FOR TOP 5 ML 2 COMPONENT FAILURES 

HOURS BY1 

3,941.1 726J2 
1,437.6 64184 

157.2 726J4 
17.0 728E2 
1.8 728E1 

5,554.7 

IP1040/APA172 AZ RANGE INDICATOR 
C2645/AIC14 ICS CONTROL 
IP1040/APA172 AZ RANGE IND (CONTD) 
CV2868/ASQ DIGITAL DATA CONV 46A2 
CP1084/ASQ DGTL DATA CMPTR 46A1 

TOTAL 

MMH FOR VERIFIED ML 2 FAILURES 

HOURS 
64,381.5 
4,256.8 

BYWUC 
72 RADAR NAVIGATION SYSTEMS 
65 INTERPHONE SYSTEMS 

68,638.3 TOTAL 

MMH FOR TOP 5 ML 2 COMPONENT FAILURES 

HOURS BYWUC 
7,160.5 
2,491.9 

202.2 
17.0 
3.6 

9,875.2 

726J2 
64184 
726J4 
728E2 
728E1 

TOTAL 

IP1040/APA172 AZ RANGE INDICATOR 
C2645/AIC14 ICS CONTROL 
IP1040/APA172 AZ RANGE IND (CONTD) 
CV2868/ASQ DIGITAL DATA CONV 46A2 
CP1084/ASQ DGTL DATA CMPTR 46A1 

TOP 10 NMCS COMPONENTS 

HOURS BY BEST- 
21,144.1 1441B 
20,922.8 14121 
14,750.0 728E1 
14,258.1 1451A 
11,841.8 62X2K 
11,244.0 728E2 
9,692.8 726DW 
8,435.6 32513 
7,789.4 726T3 
7,588.7 14521 

633,731.1 * 

-WUC 
FEEL SPRING PUSHROD 
RUDDER 
CP1084/ASQ DGTL DATA CMPTR 46AI 
BUNGEE 
F1556 BANDPASS FILTER 

CV2868/ASQ DIGITAL DATA CONV 46A2 
AM6412/APS120 RF AMPLIFIER 

PROPELLER CONTROL ASSEMBLY 
O1720/APS125 PULSE GENERATOR 
ELEVATOR TANDEM ACTUATOR 

761,398.4 TOTAL 
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E-2C HAWKEYE SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 
1994) 

TOP 10 NMCM COMPONENTS 

HOURS BY BEST 
120,731.2 14121 
57,421.8 223D1 
45,216.9 29E11 
44,834.4 32513 
38,775.2 29E1B 
37,869.1 14141 
36,242.6 14131 
27,804.1 45111 
25,705.3 14521 
23,549.5 4512Q 

1,553,793.4 * 

2,011,943.5 TOTAL 

-wuc 
RUDDER 
FUEL SYSTEM ASSEMBLY 
ENGINE ACCESSORIES INSTALLATION 
PROPELLER CONTROL ASSEMBLY 
ENGINE OIL COOLER INSTALLATION 

LANDING FLAPS 
ELEVATOR 
VARIABLE DISPLACEMENT PUMP 3000 P 
ELEVATOR TANDEM ACTUATOR 
HYDRAULIC HOSE/TUBING 

TOP 5 A799 MMH/SYSTEMS 

HOURS 

2,415.8 
1,274.4 

727.4 
724.8 
637.6 

6,048.7 
11,828.7 
5,129.3 
1,960.4 

789.7 
674.8 
669.2 

4,261.2 
13.484.6 

BY WUC 
ML 

72 RADAR NAVIGATION SYSTEMS 
42 ELEC PWR SPLY/DISTR/LTG SYSTEMS 
14 DIRECTIONAL FLT CONT/LIFT SYSTEM 
41 ENVIRON CONTROLS/PNEUMATIC SYS 
29 POWER PLANT INSTALLATION 

72 RADAR NAVIGATION SYSTEMS 
73 BOMBING NAVIGATION SYSTEMS 
61 HF COMM SYSTEMS 
56 FLIGHT REFERENCE SYSTEMS 
64 INTERPHONE SYSTEMS 

25,313.3 TOTAL 
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S-3B VIKING SELECTED WEAPONS SYSTEMS DATA (OCT 1993-SEP 1994) 

TOP 10 SYSTEM FAILURES 

COUNT BY WUC 
ML 

8,762 73 BOMBING NAVIGATION SYSTEMS 
6,988 14 FLIGHT CONTROLS 
6,978 13 LANDING GEAR 
6,659 42 ELECTRICAL POWER SYSTEM 
4,926 29 POWER PLANT INSTALLATION 
4,248 44 LIGHTING SYSTEM 
3,417 27 TURBOFAN ENGINES 
2,867 41 AIR CON/PRSRZ/ICE CONTROL 
2,720 72 RADAR NAVIGATION SYSTEMS 
2,691 64 INTERPHONE SYSTEMS 

20,872 * 
71,128 1 
5,098 73 BOMBING NAVIGATION SYSTEMS 
1,247 13 LANDING GEAR 
1,126 64 INTERPHONE SYSTEMS 
1,124 72 RADAR NAVIGATION SYSTEMS 
1,074 14 FLIGHT CONTROLS 

967 57 INTGRTD GDNCE/FLT CONT SYS 
820 71 RADIO NAVIGATION SYSTEMS 
743 29 POWER PLANT INSTALLATION 
627 42 ELECTRICAL POWER SYSTEM 
593 27 TURBOFAN ENGINES 

5,237 * 
18,656 2 

89,784 TOTAL 
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TOP 10 EMT BY SYSTEM 

SUM        BY WUC 
ML 

19,262.7 14 FLIGHT CONTROLS 
16.094.7 73 BOMBING NAVIGATION SYSTEMS 
13.779.8 42 ELECTRICAL POWER SYSTEM 
11.031.2 13 LANDING GEAR 
7,979.2 29 POWER PLANT INSTALLATION 
7,854.6 27 TURBOFAN ENGINES 
5,083.8 41 AIR CONDITIONING/PRSRZ/ICE CONTROL 
4,949.0 44 LIGHTING SYSTEM 
4.573.5 72 RADAR NAVIGATION SYSTEMS 
4,096.0 46 FUEL SYSTEM 

33,270.8 * 
127.975.3 1 
40,708.1 73 BOMBING NAVIGATION SYSTEMS 
9.086.6 64 INTERPHONE SYSTEMS 
8,691.8             72 RADAR NAVIGATION SYSTEMS 
7,717.5 57 INTEGRATED GUIDANCE/FLT CONT SYSTEMS 
5.831.8 77 PHOTOGRAPHIC/RECONNAISSANCE SYSTEMS 
5.639.9 71 RADIO NAVIGATION SYSTEMS 
4,799.8 13 LANDING GEAR 
4.636.7 14 FLIGHT CONTROLS 
4,407.2 65 IFF SYSTEMS 
4,143.4 63 UHF COMMUNICATIONS 

24.825.3 * 
120,488.1 2 

248.463.4 TOTAL 

TOP 5 COMPONENT FAILURES 

COUNT BY WUC 
ML 

1,492 29Q4H ENG PYLON INST/ASSY 
1,180 57367 CP1074/ASW33 FLT DATA 

COMPUTER 
947 64351 LS601/AI INTERCOMMUNICA- 

TION STATION 
914 64354 CV3048/AICONV 

INTERCONNECT BOX 
810 754BQ BRU14 BOMB RACK 

ASSEMBLY 
65,785 * 
71,128 1 
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709 13A6K WHL/TIRE ASSY/BK 
ASSY/SHTL Y/DUAL FL 

492 57367 CP1074/ASW33 FLT DATA 
COMPUTER 

452 73B62 CV2745/ASA84 NAV DATA 
CONVERTER 

450 63271 RT1017/ARC156 RADIO 
RCVR-XMTR 

430 64354 CV3048/AI CONV 
INTERCONNECT BOX 

16,123 * 

18,656 2 

89,784 TOTAL 

TOP 5 ML 1 COMPONENT FAILURES BY MALFUNCTION 

COUNT BY MAL 
WUC 

559 160 
297 374 
128 127 
55 070 
29 255 
87 * 

1,155 57367 
310 160 
242 080 
80 255 
77 374 
44 070 
186 * 

939 64351 
470 160 
138 255 
82 290 
79 374 
44 170 
97 * 

910 64354 
620 170 
68 160 
26 070 
22 127 
9 020 

37 * 

782 754BQ 

BROKEN WIRE/DEFEC CONTACT/CONNECTION 
INTERNAL FAILURE 
ADJUSTMENT/ALIGNMENT IMPROPER 
PUNC/RUPTURED/TORN/BRKN/CUT/BURST 
NO OUTPUT 

CP1074/ASW33 FLT DATA COMPUTER 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
BURNED OUT (LIGHT BULBS/FUSES) 
NO OUTPUT 
INTERNAL FAILURE 
PUNC/RUPTURED/TORN/BRKN/CUT/BURST 

LS601/AI INTERCOMMUNICATION STATION 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
NO OUTPUT 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
INTERNAL FAILURE 
CORRODED 

CV3048/AI CONV INTERCONNECT BOX 
CORRODED 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
PUNC/RUPTURED/TORN/BRKN/CUT/BURST 
ADJUSTMENT/ALIGNMENT IMPROPER 
STRIPPED/WORN/CHAFED/FRAYED 

BRU14 BOMB RACK ASSEMBLY 
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CORRODED 
PUNC/RUPTURED/TORN/BRKN/CUT/BURST 
PEELED/BLISTERED 
STRIPPED/WORN/CHAFED/FRAYED 
CRACKED/CRAZED 

29Q4H      ENGINE WING PYLON INSTALLATION/ASSY 

3,980 TOTAL 

EMT FOR TOP 5 ML 1 COMPONENT FAILURES 

113 170 
18 070 
17 429 
8 020 
8 190 

30 * 

194 

SUM BY^ 
1,582.4 57367 
1,401.5 64354 
1,132.3 64351 

706.3 754BQ 
301.3 29Q4H 

5,123.8 

CP1074/ASW33 FLT DATA COMPUTER 
CV3048/AI CONV INTERCONNECT BOX 
LS601/AI INTERCOMMUNICATION STATION 
BRU14 BOMB RACK ASSEMBLY 
ENGINE WING PYLON INSTALLATION/ASSY 

TOTAL 

MMH FOR VERIFIED ML 1 FAILURES 

SUM 
5,781.1 
6,227.6 
2,259.7 

14,368.4 

BY WUC 
57 
64 
75 

TOTAL 

INTEGRATED GUIDANCE/FLT CONT SYSTEMS 
INTERPHONE SYSTEMS 
WEAPON DELIVERY 

MMH FOR TOP 5 ML 1 COMPONENT FAILURES 

SUM BY^ 
2,697.0 57367 
2,489.4 64354 
1,879.4 64351 

877.2 754BQ 
425.8 29Q4H 

8,368.8 TOTAL 

CP1074/ASW33 FLT DATA COMPUTER 
CV3048/AI CONV INTERCONNECT BOX 
LS601/AI INTERCOMMUNICATION STATION 
BRU14 BOMB RACK ASSEMBLY 
ENGINE WING PYLON INSTALLATION/ASSY 
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TOP 5 ML 2 COMPONENT FAILURES BY MALFUNCTION 

COUNT BY MAL 
WUC 

283 160 
151 290 
35 070 
4 374 
3 127 
10 * 

486 57367 
272 160 
141 290 
15 070 
14 127 
2 374 
7 * 

451 73B62 
149 127 
119 290 
116 160 
33 070 
12 170 
18 * 

447 63271 
240 160 
102 290 
43 127 
27 070 
10 374 
6 * 

428 64354 
6 572 
4 020 
4 781 
3 070 
3 571 
9 * 

29 13A6K 

BROKEN WIRE/DEFEC CONTACT/CONNECTION 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
PUNC/RUPTURED/TORN/BROKEN/CUT/BURST 
INTERNAL FAILURE 
ADJUSTMENT/ALIGNMENT IMPROPER 

CP1074/ASW33 FLT DATA COMPUTER 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
PUNCT/RUPTURED/TORN/BROKEN/CUT/BURST 
ADJUSTMENT/ALIGNMENT IMPROPER 
INTERNAL FAILURE 

CV2745/ASA84 NAV DATA CONVERTER 
ADJUSTMENT/ALIGNMENT IMPROPER 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
PUNCT/RUPTURED/TORN/BROKEN/CUT/BURST 
CORRODED 

RT1017/ARC156 RADIO RCVR-XMTR 
BROKEN WIRE/DEFEC CONTACT/CONNECTION 
FAILS DIAGNOSTIC/AUTOMATIC TESTS 
ADJUSTMENT/ALIGNMENT IMPROPER 
PUNCT/RUPTURED/TORN/BROKEN/CUT/BURST 
INTERNAL FAILURE 

CV3048/AI CONV INTERCONNECT BOX 
EDDY-CURRENT INSPECTION 
STRIPPEDAVORN/CHAFED/FRAYED 
TIRE LEAKAGE EXCESSIVE OR BLOWOUT 
PUNCT/RUPTURED/TORN/BROKEN/CUT/BURST 
MAGNETIC PARTICLE INSPECTION 

WHL/TIRE ASSY/BK ASSY/SHTLY/DUAL FL 

1,841 TOTAL 
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EMT FOR TOP 5 ML 2 COMPONENT FAILURES 

SUM BY WUC 
5,528.3 57367      CP1074/ASW33 FLT DATA COMPUTER 
4,442.7 64354      CV3048/AI CONV INTERCONNECT BOX 
4,125.3 73B62      CV2745/ASA84 NAV DATA CONVERTER 
3,454.0 63271      RT1017/ARC156 RADIO RCVR-XMTR 

91.1 13A6K      WHL/TIRE ASSY/BK ASSY/SHTL Y/DUAL FL 

17,641.4 TOTAL 

MMH FOR VERIFIED ML 2 FAILURES 

SUM BY WUC 
11,981.8 57 INTEGRATED GUIDANCE/FLT CONT SYSTEMS 
13,413.4 64 INTERPHONE SYSTEMS 
66,753.3 73 BOMBING NAVIGATION SYSTEMS 
6,435.7 63 UHF COMM SYSTEMS 
8,037.4 13 LANDING GEAR 

106,621.6 TOTAL 

MMH FOR TOP 5 ML 2 COMPONENT FAILURES 

SUM BY WUC 
8,498.2 57367      CP1074/ASW33 FLT DATA COMPUTER 
6.565.6 64354      CV3048/AI CONV INTERCONNECT BOX 
6.292.7 73B62      CV2745/ASA84 NAV DATA CONVERTER 
5^487.8 63271      RT1017/ARC156 RADIO RCVR-XMTR 

191.2 13A6K      WHL/TIRE ASSY/BK ASSY/SHTL Y/DUAL FL 

27,035.5 TOTAL 
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TOP 10 NMCS COMPONENTS 

SUM BY BEST- 
103,468.4 722H1 
23,839.7 14125 
21,696.7 726R7 
21,253.8 73B43 
20,860.2 29Q4Q 
20,583.4 722H2 
20,473.7 24A22 
19,966.0 13A71 
19,557.9 727H3 
17,451.6 726RG 

1,400,327.9 * 

1,689,479.3 TOTAL 

■wuc 
RT1023/APN201 RDR RCVR TRANSMITTE 

COMPLETE ELEVATOR ASSEMBLY 
AS3637/APS137(V) ANTENNA 
IP1054/ASA82 TAC ACOUSTIC INDICAT 
AIR START VALVE 
ID1770/APN201 HEIGHT INDICATOR 
GTCP36-201 GAS TURBINE ENGINE 
HYDR PLMB INSTL RH WHL WELL FS 415-4 
T1203/APS116 RADAR SET TRANSMITTE 
R2308/APS137(V) RCVR-PULSE CMPSR 

TOP 10 NMCM COMPONENTS 

SUM BY BEST-WUC 
92.746.4 14125 COMPLETE ELEVATOR ASSEMBLY 
55,440.3 42111 INTEGRATED DRIVE GENERATOR ASSEMBLY 
50,899.3 12111 EJECTION SEAT ASSEMBLY IE-1 
47.609.1 27100 TF34 ENGINE 
47.405.5 24A22 GTCP36-201 GAS TURBINE ENGINE 
46,607.9 29Q4Q      AIR START VALVE 
41.156.2 1431C AEL/ROLL TRIM/SPBK/ROLL MIXER SERVO 
37.665.8 14325 INNER WING LWR SPOILER NULL MECHANIS 
34.348.9 13A6K      WHL/TIRE ASSY/BK ASSY/SHTL Y/DUAL FL 
32,603.1 29Q4F TURBOFAN ENGINE BUILDUP ASSEMBLY 

2,934,329.4 * 

3,420,811.9 TOTAL 
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TOP 5 A799 MMH/SYSTEMS 

SUM BY WUC 
ML 

2,636.1 73 BOMBING NAVIGATION SYSTEMS 
820.3 14 FLIGHT CONTROLS 
648.8 72 RADAR NAVIGATION SYSTEMS 
637.9 13 LANDING GEAR 
538.1 46 FUEL SYSTEM 

5,226.3 * 

10,507.5 1 
6,274.3 73 BOMBING NAVIGATION SYSTEMS 
1,349.4 57 INTEGRATED GUIDANCE/FLT CON 
1,273.3 72 RADAR NAVIGATION SYSTEMS 
1,193.9 64 INTERPHONE SYSTEMS 
1,077.1 71 RADIO NAVIGATION SYSTEMS 
6,111.2 * 

17,279.2 2 

27,786.7 TOTAL 
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APPENDIX B.  A-799 

Component 
cost 

FUVStandardl 
cost       I 

Current 
procurement cost 

j Surcharge 

Costs of 
Supply ops 

^    Inventory 
**    Losses 

Transportation 

Obsolescence I 

Price 
stabilzationAnflation 

Inventory 
malnt 

A-799 
considerations 

Current 
repair cost 

Depot washout 
factor Y 

Carcass loss 
factor 

!• 

CMian tech 
reps      I 

Contractor 
lech reps 

Military 
techs 

Direct Costs I 

Ovllan, contractor, 
miitary man-hour 

Othercost   I 
considerations I 

Indirect 
costs 

I Overhead | 
costs     I 
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